Advertisement

Catalysis in Industry

, Volume 11, Issue 1, pp 53–58 | Cite as

Synthesis of Oxygenates from Syngas on the CuO/ZnO/Al2O3 Catalyst: The Role of the Dehydrating Component

  • M. A. KipnisEmail author
  • I. A. Belostotskii
  • E. A. Volnina
  • G. I. Lin
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 20 Downloads

Abstract

The effect of the space velocity on the characteristics of bifunctional catalysts with different dehydrating components in the synthesis of methanol/dimethyl ether (DME) from syngas with a composition (vol %): CO 19.1, CO2 5.9, N2 5.5, H2 (the rest) at 260°C and 3 MPa was studied. The commercial catalyst of methanol synthesis MegaMax 507 (CuO/ZnO/Al2O3) was used as the methanol component of the catalyst; the dehydrating agent was active gamma-alumina and quartz glass (for comparison), which is inert in methanol dehydration. At space velocities of less than 20 000 L(kgcat h)–1, the CO conversion and oxygenate productivity (based on C1) for the samples with alumina are higher than for the samples with quartz glass. The effect was explained by the fact that at partial conversion of methanol into DME, the rate of the reverse reaction of methanol with water decreases. This ultimately leads to an increase in the yield of methanol. The preferability of the one-stage synthesis over the two-stage synthesis in the production of oxygenates depends on the load on gas, the difference in the productivity passing through a maximum at increased load on gas.

Keywords:

oxygenates dimethyl ether methanol synthesis methanol dehydration alumina 

Notes

ACKNOWLEDGMENTS

This study was performed within the framework of the state assignment at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    Pontzen, F., Liebner, W., Gronemann, V., Rothaemel, M., and Ahlers, B., Catal. Today, 2011, vol. 171, no. 1, pp. 242–250.CrossRefGoogle Scholar
  2. 2.
    Saravanan, K., Ham, H., Tsubaki, N., and Bae, J.W., Appl. Catal., B, 2017, vol. 217, pp. 494–522.CrossRefGoogle Scholar
  3. 3.
    Kunkes, E., and Behrens, M., in Chemical Energy Storage, Schlögl, R., Ed., Berlin: De Gruyter, 2013, pp. 413–442.Google Scholar
  4. 4.
    Busca, G., Heterogeneous Catalytic Materials. Solid State Chemistry, Surface Chemistry, and Catalytic Behavior, ch. 9. Amsterdam: Elsevier, 2014.Google Scholar
  5. 5.
    Rozovskii, A.Ya., Slivinskii, E.V., Lin, G.I., Makhlin, V.A., Kolbanovsky, Y.A., and Platé, N.A., Pure Appl. Chem., 2004, vol. 76, no. 9, pp. 1735–1747.CrossRefGoogle Scholar
  6. 6.
    Dadgar, F., Myrstad, R., Pfeifer, P., Holmen, A., and Venvik, H.J., Catal. Today, 2016, vol. 270, pp. 76–84.CrossRefGoogle Scholar
  7. 7.
    Zhou, X., Su, T., Jiang, Y., Qin, Z., Ji, H., and Guo, Z., Chem. Eng. Sci., 2016, vol. 153, pp. 10–20.CrossRefGoogle Scholar
  8. 8.
    Bonura, G., Cordaro, M., Cannilla, C., Mezzapica, A., Spadaro, L., Arena, F., and Frusteri, F., Catal. Today, 2014, vol. 228, pp. 51–57.CrossRefGoogle Scholar
  9. 9.
    Mao, D., Xia, J., Zhang, B., and Lu, G., Energy Convers. Manage., 2010, vol. 51, no. 6, pp. 1134–1139.CrossRefGoogle Scholar
  10. 10.
    Zhu, Y., Wang, S., Ge, X., Liu, Q., Luo, Z., and Cen, K., Fuel Process. Technol., 2010, vol. 91, no. 4, pp. 424–429.CrossRefGoogle Scholar
  11. 11.
    An, X., Zuo, Y.-Z., Zhang, Q., Wang, D.-Z., and Wang, J.-F., Ind. Eng. Chem. Res., 2008, vol. 47, no. 17, pp. 6547–6554.CrossRefGoogle Scholar
  12. 12.
    Moradi, G., Ahmadpour, J., Nazari, M., and Yaripour, F., Ind. Eng. Chem. Res., 2008, vol. 47, no. 20, pp. 7672–7679.CrossRefGoogle Scholar
  13. 13.
    Cheng, C., Zhang, H., Ying, W., and Fang, D., Korean J. Chem. Eng., 2011, vol. 28, no. 7, pp. 1511–1517.CrossRefGoogle Scholar
  14. 14.
    Ng, K.L., Chadwick, D., and Toseland, B.A., Chem. Eng. Sci., 1999, vol. 54, nos. 15–16, pp. 3587–3592.Google Scholar
  15. 15.
    Kipnis, M.A., Samokhin, P.V., Belostotskii, I.A., and Turkova, T.V., Catal. Ind., 2018, vol. 10, no. 2, pp. 97–104.CrossRefGoogle Scholar
  16. 16.
    Kipnis, M.A., Belostotskii, I.A., Volnina, E.A., Lin, G.I., and Marshev, I.I., Kinet. Catal., 2018, vol. 59, no. 6, pp. 754–765.Google Scholar
  17. 17.
    Catalyst Handbook with Special Reference to Unit Processes in Ammonia and Hydrogen Manufacture, Dowden, D.A., Andrew, S.P.S., Campbell, J.S., and Phillipson, J.J., Eds., London: Wolfe Scientific Books, 1970.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. A. Kipnis
    • 1
    Email author
  • I. A. Belostotskii
    • 1
  • E. A. Volnina
    • 1
  • G. I. Lin
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations