Skip to main content
Log in

Using Low-Temperature Molten Dialkylimidazole Salts in the Catalytic Reactions of Alkylation and Hydrodechlorination

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The possibility of preparing a mixture of 1,3-dialkylimidazole salts from commercially available reagents via multicomponent condensation is considered. The main factors affecting the yield of the target product, and the experimental data needed for scaling up the process, are discussed. It is shown that the prepared mixtures are close in some key properties (e.g., viscosity at different temperatures, heat capacity) to the pure salts. The possibility of using the prepared salts as solvents for catalytic hydrodechlorination and catalyst components for the alkylation of aromatic compounds is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Jutz, F., Andanson, J.-M., and Baiker, A., Chem. Rev., 2011, vol. 111, no. 2, pp. 322–353.

    Article  CAS  PubMed  Google Scholar 

  2. Olivier-Bourbigou, H., Magna, L., and Morvan, D., Appl. Catal., A, 2010, vol. 373, nos. 1–2, pp. 1–56.

  3. Chatel, G., Pereira, J.F.B., Debbeti, V., Wang, H., and Rogers, R.D., Green Chem., 2014, vol. 16, no. 4, pp. 2051–2083.

    Article  CAS  Google Scholar 

  4. Kim, D.W., Song, C.E., and Chi, D.Y., J. Org. Chem., 2003, vol. 68, no. 11, pp. 4281–4285.

    Article  CAS  PubMed  Google Scholar 

  5. Lim, H.K., Kim, D.R., Lee, K.I., Hwang, D.W., and Hwang, I.T., Biomass Bioenergy, 2016, vol. 94, pp. 31–38.

    Article  CAS  Google Scholar 

  6. Ionic Liquids in Organic Synthesis, Malhotra, S.V., Ed., Washington, DC: ACS, 2007.

    Google Scholar 

  7. Prikhod’ko, S.A., Adonin, N.Yu., and Parmon, V.N., Tetrahedron Lett., 2010, vol. 51, no. 17, pp. 2265–2268.

    Article  CAS  Google Scholar 

  8. Song, H., Yan, N., Fei, Z., Kilpin, K.J., Scopelliti, R., Li, X., and Dyson, P.J., Catal. Today, 2012, vol. 183, no. 1, pp. 172–177.

    Article  CAS  Google Scholar 

  9. Karpińska, M., Domańska, U., and Wlazło, M., J. Chem. Thermodyn., 2016, vol. 103, pp. 423–431.

    Article  CAS  Google Scholar 

  10. Dharaskar, S.A., Wasewar, K.L., Varma, M.N., Shende, D.Z., and Yoo, C., Arabian J. Chem., 2016, vol. 9, no. 4, pp. 578–587.

    Article  CAS  Google Scholar 

  11. Janssen, C.H.C., Sánchez, A., Witkamp, G.-J., and Kobrak, M.N., ChemPhysChem, 2013, vol. 14, no. 16, pp. 3806–3813.

    Article  CAS  PubMed  Google Scholar 

  12. Goossens, K., Lava, K., Bielawski, C.W., and Binnemans, K., Chem. Rev., 2016, vol. 116, no. 8, pp. 4643–4807.

    Article  CAS  PubMed  Google Scholar 

  13. Hallett, J.P. and Welton, T., Chem. Rev., 2011, vol. 111, no. 5, pp. 3508–3576.

    Article  CAS  PubMed  Google Scholar 

  14. Welton, T., Chem. Rev., 1999, vol. 99, no. 8, pp. 2071–2084.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, D., Wu, M., Kou, Y., and Min, E., Catal. Today, 2002, vol. 74, nos. 1–2, pp. 157–189.

  16. Burrell, A.K., Del Sesto, R.E., Baker, S.N., McCleskey, T.M., and Baker, G.A., Green Chem., 2007, vol. 9, no. 5, pp. 449–454.

    Article  CAS  Google Scholar 

  17. Holbrey, J.D., Reichert, W.M., Swatloski, R.P., Broker, G.A., Pitner, W.R., Seddon, K.R., and Rogers, R.D., Green Chem., 2002, vol. 4, no. 5, pp. 407–413.

    Article  CAS  Google Scholar 

  18. Cassol, C.C., Ebeling, G., Ferrera, B., and Dupont, J., Adv. Synth. Catal., 2006, vol. 348, nos. 1–2, pp. 243–248.

  19. US Patent 20 080 045 723, 2008.

  20. Muthyala, M.K., Choudhary, S., Pandey, K., Shelke, G.M., Jha, M., and Kumar, A., Eur. J. Org. Chem., 2014, vol. 2014, no. 11, pp.2365–2370.

    Article  CAS  Google Scholar 

  21. Petit, S., Azzouz, R., Fruit, C., Bischoff, L., and Marsais, F., Tetrahedron Lett., 2008, vol. 49, no. 22, pp. 3663–3665.

    Article  CAS  Google Scholar 

  22. Prikhod'ko, S.A., Adonin, N.Yu., and Parmon, V.N., Russ. Chem. Bull., 2013, vol. 62, no. 1, pp. 33–38.

    Article  CAS  Google Scholar 

  23. US Patent 9 328 037, 2014.

  24. Jpn. Patent 2 001 122 885, 1999.

  25. Schaub, T., Backes, M., and Radius, U., Organometallics, 2006, vol. 25, no. 17, pp. 4196–4206.

    Article  CAS  Google Scholar 

  26. Schaub, T. and Radius, U., Chem.-Eur. J., 2005, vol. 11, no. 17, pp. 5024–5030.

    Article  CAS  PubMed  Google Scholar 

  27. Scott, N.M., Dorta, R., Stevens, E.D., Correa, A., Cavallo, L., and Nolan, S.P., J. Am. Chem. Soc., 2005, vol. 127, no. 10, pp. 3516–3526.

    Article  CAS  PubMed  Google Scholar 

  28. Jpn. Patent 2008074740, 2008.

  29. Depuydt, D., van den Bossche, A., Dehaen, W., and Binnemans, K., RSC Adv., 2016, vol. 6, no. 11, pp. 8848–8859.

    Article  CAS  Google Scholar 

  30. WO Patent 2 002 094 883, 2001.

  31. WO Patent 2 011 056 924, 2009.

  32. WO Patent 2 009 074 535, 2007.

  33. Dupont, J., Consorti, C.S., Suarez, P.A.Z., and Souza, R.F., D, Org. Synth. Collect., 2004, vol. 10, p. 184.

    Google Scholar 

  34. Arduengo III, A.J., Krafczyk, R., Schmutzler, R., Craig, H.A., Goerlich, J.R., Marshall, W.J., and Unverzagt, M., Tetrahedron, 1999, vol. 55, no. 51, pp. 14523–14534.

    Article  CAS  Google Scholar 

  35. US Patent 5 077 414, 1991.

  36. Clare, B., Sirwardana, A., and MacFarlane, D.R., in Ionic Liquids, Kirchner, B. Ed., New York: Springer, 2009, pp. 1–40.

    Google Scholar 

  37. Zhang, S., Sun, N., He, X., Lu, X., Zhang, X., Lu, X., and Zhang, X., J. Phys. Chem. Ref. Data, 2006, vol. 35, no. 4, pp. 1475–1517.

    Article  CAS  Google Scholar 

  38. Fendt, S., Padmanabhan, S., Blanch, H.W., and Prausnitz, J.M., J. Chem. Eng. Data, 2011, vol. 56, no. 1, pp. 31–34.

    Article  CAS  Google Scholar 

  39. Yamamuro, O., Minamimoto, Y., Inamura, Y., Hayashi, S., and Hamaguchi, H., Chem. Phys. Lett., 2006, vol. 423, nos. 4–6, pp. 371–375.

  40. Machida, H., Taguchi, R., Sato, Y., and Smith, J.R.L., J. Chem. Eng. Data, 2011, vol. 56, no. 4, pp. 923–928.

    Article  CAS  Google Scholar 

  41. Garrido, R., Hernández-Montes, P.S., Gordillo, Á., Gómez-Sal, P., López-Mardomingo, C., and de Jesús, E., Organometallics, 2015, vol. 34, no. 10, pp. 1855–1863.

    Article  CAS  Google Scholar 

  42. Chelucci, G. and Figus, S., J. Mol. Catal. A: Chem., 2014, vol. 393, pp. 191–209.

    Article  CAS  Google Scholar 

  43. Weidauer, M., Irran, E., Someya, C.I., Haberberger, M., and Enthaler, S., J. Organomet. Chem., 2013, vol. 729, pp. 53–59.

    Article  CAS  Google Scholar 

  44. Gryglewicz, S. and Piechocki, W., Chemosphere, 2011, vol. 83, no. 3, pp. 334–339.

    Article  CAS  PubMed  Google Scholar 

  45. Lokteva, E.S., Kachevskii, S.A., Turakulova, A.O., Golubina, E.V., Lunin, V.V., Ermakov, A.E., Uimin, M.A., and Mysik, A.A., Russ. J. Phys. Chem. A, 2009, vol. 83, no. 8, pp. 1300–1306.

    Article  CAS  Google Scholar 

  46. Cecilia, J.A., Infantes-Molina, A., and Rodríguez-Castellón, E., J. Hazard. Mater., 2015, vol. 296, pp. 112–119.

    Article  CAS  PubMed  Google Scholar 

  47. Prikhod’ko, S.A., Adonin, N.Yu., and Parmon, V.N., Russ. Chem. Bull., 2009, vol. 58, no. 11, pp. 2304–2310.

    Article  CAS  Google Scholar 

  48. Thomas, C.A., Anhydrous Aluminum Chloride in Organic Chemistry, New York: Reinhold, 1941.

    Google Scholar 

  49. Qiao, C.-Z., Zhang, Y.-F., Zhang, J.-C., and Li, C.-Y., Appl. Catal., A, 2004, vol. 276, nos. 1–2, pp. 61–66.

  50. Qiao, C., Cai, Y., and Guo, Q., Front. Chem. Eng. China, 2008, vol. 2, no. 3, pp. 346–352.

    Article  Google Scholar 

  51. Zhao, Z.-K., Qiao, W.-H., Li, Z.-S., Wang, G.-R., and Cheng, L.-B., J. Mol. Catal. A: Chem., 2004, vol. 222, nos. 1–2, pp. 207–212.

  52. Zhao, Z., Yuan, B., Qiao, W., Li, Z., Wang, G., and Cheng, L., J. Mol. Catal. A: Chem., 2005, vol. 235, nos. 1–2, pp. 74–80.

  53. Jia, L.-J., Wang, Y.-Y., Chen, H., Shan, Y.-K., and Dai, L.-Y., React. Kinet. Catal. Lett., 2005, vol. 86, no. 2, pp. 267–273.

    Article  CAS  Google Scholar 

  54. Xin, H., Wu, Q., Han, M., Wang, D.Z., and Jin, Y., Appl. Catal., A, 2005, vol. 292, pp. 354–361.

  55. He, Y., Wan, C., Zhang, Q., Zhan, X., Cheng, D.-G., and Chen, F., RSC Adv., 2015, vol. 5, no. 76, pp. 62241–62247.

    Article  CAS  Google Scholar 

  56. RF Patent 2 019 560, 1994.

Download references

ACKNOWLEDGMENTS

This work was performed as part of a State Task for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. АААА-А17-117041710082-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Klimenko.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, A.S., Prikhod’ko, S.A., Beskopyl’nyi, A.M. et al. Using Low-Temperature Molten Dialkylimidazole Salts in the Catalytic Reactions of Alkylation and Hydrodechlorination. Catal. Ind. 10, 313–320 (2018). https://doi.org/10.1134/S2070050418040086

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050418040086

Keywords:

Navigation