Skip to main content
Log in

Developing Effective Cobalt Catalysts for Hydrogen-Generating Solid-State NaBH4 Composite

  • Photo- and Electrocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Hydrogen-generating solid-state NaBH4 composite are promising systems for storing and transporting hydrogen intended for use in low-temperature proton-exchange membrane fuel cells. Catalysts are introduced into the composites to ensure the generation of hydrogen at ambient temperatures. In this work, the effect of the synthesis conditions for cobalt catalyst on the gas generation rate is analyzed. It is found that the efficiency of hydrogen generation depends on the nature of the cobalt salt and pH of the aqueous solution of the salt in which the active component precursor is reduced under the action of sodium borohydride because these factors determine the composition, degree of dispersion, and magnetic behavior of the cobalt systems. It is found that the highest rate of gas generation—505 cm3/min per gram of the composite with a hydrogen content of 8.4 wt %—is observed for a sample reduced with sodium borohydride in a hydrochloric acid solution of cobalt chloride with a pH of 1.3. The results can be used to develop effective inexpensive cobalt catalysts for the production of hydrogen from pelletized solid-state NaBH4 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okumus, E., San, F.G.B., Okur, O., Turk, B.E., Cengelci, E., Kilic, M., Karadag, C., Cavdar, M., Turkmen, A., and Yazici, M.S., Int. J. Hydrogen Energy, 2017, vol. 42, no. 4, pp. 2691–2697.

    Article  CAS  Google Scholar 

  2. Nunes, H.X., Ferreira, M.J.F., Rangel, C.M., and Pinto, A.M.F.R., Int. J. Hydrogen Energy, 2016, vol. 41, no. 34, pp. 15426–15432.

    Article  CAS  Google Scholar 

  3. Li, S.-C. and Wang, F.-C., Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, pp. 3038–3051.

    Article  CAS  Google Scholar 

  4. Wang, L., Li, Z., Zhang, Y., Zhang, T., and Xie, G., J. Alloys Compd., 2017, vol. 702, pp. 649–658.

    Article  CAS  Google Scholar 

  5. Netskina, O.V., Komova, O.V., and Simagina, V.I., Russ. J. Appl. Chem., 2016, vol. 89, no. 10, pp. 1625–1631.

    Article  CAS  Google Scholar 

  6. Wei, L., Ma, M., Lu, Y., Zhang, S., Gao, J., and Dong, X., Funct. Mater. Lett., 2017, vol. 10, no. 5, p. 1750065.

    Article  CAS  Google Scholar 

  7. Eugénio, S., Demirci, U.B., Silva, T.M., Carmezim, M.J., and Montemor, M.F., Int. J. Hydrogen Energy, 2016, vol. 41, no. 20, pp. 8438–8448.

    Article  CAS  Google Scholar 

  8. Park, D. and Kim, T., J. Nanosci. Nanotechnol., 2016, vol. 16, no. 2, pp. 1740–1743.

    Article  CAS  PubMed  Google Scholar 

  9. Oh, T.H., Gang, B.G., Kim, H., and Kwon, S., Energy, 2015, vol. 90, part. 1, pp. 1163–1170.

    Article  CAS  Google Scholar 

  10. Yang, J., Cheng, F., Liang, J., and Chen, J., Int. J. Hydrogen Energy, 2011, vol. 36, no. 2, pp. 1411–1417.

    Article  CAS  Google Scholar 

  11. Dai, H.-B., Liang, Y., Wang, P., and Cheng, H.-M., J. Power Sources, 2008, vol. 177, no. 1, pp. 17–23.

    Article  CAS  Google Scholar 

  12. Kojima, Y., Suzuki, K.-I., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., and Matsumoto, S., J. Power Sources, 2004, vol. 125, no. 1, pp. 22–26.

    Article  CAS  Google Scholar 

  13. Marchionni, A., Bevilacqua, M., Filippi, J., Folliero, M.G., Innocenti, M., Lavacchi, A., Miller, H.A., Pagliaro, M.V., and Vizza, F., J. Power Sources, 2015, vol. 299, pp. 391–397.

    Article  CAS  Google Scholar 

  14. Minkina, V.G., Shabunya, S.I., Kalinin, V.I., Martynenko, V.V., and Smirnova, A.L., Int. J. Hydrogen Energy, 2012, vol. 37, no. 4, pp. 3313–3318.

    Article  CAS  Google Scholar 

  15. Minkina, V.G., Shabunya, S.I., Kalinin, V.I., Martynenko, V.V., and Smirnova, A.L., Int. J. Hydrogen Energy, 2008, vol. 33, no. 20, pp. 5629–5635.

    Article  CAS  Google Scholar 

  16. Netskina, O.V., Komova, O.V., Mukha, S.A., and Simagina, V.I., Catal. Commun., 2016, vol. 85, pp. 9–12.

    Article  CAS  Google Scholar 

  17. Netskina, O.V., Komova, O.V., Simagina, V.I., Odegova, G.V., Prosvirin, I.P., and Bulavchenko, O.A., Renewable Energy, 2016, vol. 99, pp. 1073–1081.

    Article  CAS  Google Scholar 

  18. Liu, C.-H., Chen, B.-H., Hsueh, C.-L., Ku, J.-R., and Tsau, F., J. Power Sources, 2010, vol. 195, no. 12, pp. 3887–3892.

    Article  CAS  Google Scholar 

  19. Liu, C.-H., Kuo, Y.-C., Chen, B.-H., Hsueh, C.-L., Hwang, K.-J., Ku, J.-R., Tsau, F., and Jeng, M.-S., Int. J. Hydrogen Energy, 2010, vol. 35, no. 9, pp. 4027–4040.

    Article  CAS  Google Scholar 

  20. Liu, B.H., Li, Z.P., and Suda, S., J. Alloys Compd., 2009, vol. 468, nos. 1–2, pp. 493–498.

    Article  CAS  Google Scholar 

  21. Netskina, O.V., Ozerova, A.M., Komova, O.V., Odegova, G.V., and Simagina, V.I., Catal. Today, 2015, vol. 245, pp. 86–92.

    Article  CAS  Google Scholar 

  22. Hsueh, C.-L., Liu, C.-H., Chen, B.-H., Lee, M.-S., Chen, C.-Y., Lu, Y.-W., Tsau, F., and Ku, J.-R., J. Power Sources, 2011, vol. 196, no. 7, pp. 3530–3538.

    Article  CAS  Google Scholar 

  23. Gislon, P., Monteleone, G., and Prosini, P.P., Int. J. Hydrogen Energy, 2009, vol. 34, no. 2, pp. 929–937.

    Article  CAS  Google Scholar 

  24. Ferreira, M.J.F., Gales, L., Fernandes, V.R., Rangel, C.M., and Pinto, A.M.F.R., Int. J. Hydrogen Energy, 2010, vol. 35, no. 18, pp. 9869–9878.

    Article  CAS  Google Scholar 

  25. Kim, J.-H., Choi, K.-H., and Choi, Y.S., Int. J. Hydrogen Energy, 2010, vol. 35, no. 9, pp. 4015–4019.

    Article  CAS  Google Scholar 

  26. Duke, B.J., Gulbert, J.R., and Read, I.A., J. Chem. Soc. A, 1964, pp. 540–542.

    Google Scholar 

  27. Simagina, V.I., Ozerova, A.M., Komova, O.V., Odegova, G.V., Kellerman, D.G., Fursenko, R.V., Odintsov, E.S., and Netskina, O.V., Catal. Today, 2015, vol. 242, part A, pp. 221–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Netskina.

Additional information

Original Russian Text © O.V. Netskina, O.V. Komova, V.I. Simagina, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netskina, O.V., Komova, O.V. & Simagina, V.I. Developing Effective Cobalt Catalysts for Hydrogen-Generating Solid-State NaBH4 Composite. Catal. Ind. 10, 166–172 (2018). https://doi.org/10.1134/S2070050418020149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050418020149

Keywords

Navigation