Skip to main content
Log in

Properties of Chimeric Polysaccharide Monooxygenase with an Attached Cellulose Binding Module and Its Use in the Hydrolysis of Cellulose-Containing Materials in the Composition of Cellulase Complexes

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The use of recently discovered polysaccharide monooxygenases (PMO) in the composition of cellulase complexes greatly enhances their saccharification ability. Genetic engineering is used in this work to produce a chimeric enzyme based on the Thielavia terrestris PMO with cellulose binding module (CBM) from the Penicillium verruculosum cellobiohydrolase I attached to the PMO С-terminus via a peptide linker. Chimeric PMO exhibits higher (by 24%) activity toward amorphous cellulose and wider substrate specificity than the initial PMO. As a result of the CBM attachment, chimeric PMO acquires the ability to cleave xylan and carboxymethyl cellulose in addition to cellulose and β-glucan, and its activity toward xyloglucan increases by one order of magnitude. Replacing 10% of the highly active cellulase preparation hBGL2 produced by P. verruculosum with the chimeric PMO while retaining the overall dose of the enzymes with regard to their protein concentration increases the yield of sugars during the hydrolysis of microcrystalline cellulose and powdered aspen wood by 24 and 47%, respectively. In addition, the maximum yield of sugars during wood hydrolysis is achieved in 24 h of reaction time, in contrast to hydrolysis with the indicated preparation without the added PMO, which requires 48 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., and Monot, F., Curr. Opin. Biotechnol., 2009, vol. 20, no. 3, pp. 372–380.

    Article  CAS  PubMed  Google Scholar 

  2. Merino, S.T. and Cherry, J., Adv. Biochem. Eng./Biotechnol., 2007, vol. 108, pp. 95–120.

    CAS  Google Scholar 

  3. Sims, R.E.H., Mabee, W., Saddler, J.N., and Taylor, M., Bioresour. Technol., 2010, vol. 101, no. 6, pp. 1570–1580.

    Article  CAS  PubMed  Google Scholar 

  4. Žifcáková, L. and Baldrian, P., Fungal Ecol., 2012, vol. 5, no. 5, pp. 481–489.

    Article  Google Scholar 

  5. Kim, I.J., Nam, K.H., Yun, E.J., Kim, S., Youn, H.J., Lee, H.J., Choi, I.-G., and Kim, K.H., Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 20, pp. 8537–8547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Proskurina, O.V., Korotkova, O.G., Rozhkova, A.M., Kondrat’eva, E.G., Matys, V.Yu., Zorov, I.N., Koshelev, A.V., Okunev, O.N., Nemashkalov, V.A., Bubnova, T.V., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2015, vol. 51, no. 6, pp. 667–673.

    Article  CAS  Google Scholar 

  7. Bulakhov, A.G., Gusakov, A.V., Chekushina, A.V., Satrutdinov, A.D., Koshelev, A.V., Matys, V.Yu., and Sinitsyn, A.P., Biochemistry (Moscow), 2016, vol. 81, no. 5, pp. 530–537.

    Article  CAS  Google Scholar 

  8. Phillips, M.C., Beeson, W.T., Cate, J.H.D., and Marletta, M.A., ACS Chem. Biol., 2011, vol. 6, no. 12, pp. 1399–1406.

    Article  CAS  Google Scholar 

  9. Levasseur, A., Drula, E., Lombard, V., Coutinho, P.M., and Henrissat, B., Biotechnol. Biofuels, 2013, vol. 6, no. 41, pp. 1–14.

    Google Scholar 

  10. Quinlan, R.J., Sweeney, M.D., Leggio, L.L., Otten, H., Poulsen, J.-C.N., Johansen, K.S., Krogh, K.B.R.M., Jørgensen, C.I., Tovborg, M., Anthonsen, A., Tryfona, T., Walter, C.P., Dupree, P., Xu, F., Davies, G.J., and Walton, P.H., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 37, pp. 15079–15084.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tanghe, M., Danneels, B., Camattari, A., Glieder, A., Vandenberghe, I., Devreese, B., Stals, I., and Desmet, T., Mol. Biotechnol., 2015, vol. 57, nos. 11–12, pp. 1010–1017.

    Article  CAS  PubMed  Google Scholar 

  12. Morozova, V.V., Gusakov, A.V., Andrianov, R.M., Pravilnikov, A.G., Osipov, D.O., and Sinitsyn, A.P., Biotechnol. J., 2010, vol. 5, no. 8, pp. 871–880.

    Article  CAS  PubMed  Google Scholar 

  13. Crouch, L.I., Labourel, A., Walton, P.H., Davies, G.J., and Gilbert, H.J., J. Biol. Chem., 2016, vol. 291, no. 14, pp. 7439–7449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. RF Patent 2378372, Byull. Izobret., 2010, no.1.

  15. Dotsenko, A.S., Gusakov, A.V., Volkov, P.V., Rozhkova, A.M., and Sinitsyn, A.P., Biotechnol. Bioeng., 2016, vol. 113, no. 2, pp. 283–291.

    Article  CAS  PubMed  Google Scholar 

  16. Aslanidis, C. and de Jong, P.J., Nucleic Acids Res., 1990, vol. 18, no. 20, pp. 6069–6074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanger, F., Nicklen, S., and Coulson, A.R., Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 12, pp. 5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Merzlov, D.A., Zorov, I.N., Dotsenko, G.S., Denisenko, Yu.A., Rozhkova, A.M., Satrutdinov, A.D., Rubtsova, E.A., Kondratieva, E.G, and Sinitsyn, A.P., Biochemistry (Moscow), 2015, vol. 80, no. 4, pp. 473–482.

    Article  CAS  Google Scholar 

  19. Aleksenko, A.Y., Makarova, N.A., Nikolaev, I.V., and Clutterbuck, A.J., Curr. Genet., 1995, vol. 28, no. 5, pp. 474–477.

    Article  CAS  Google Scholar 

  20. Proteome Research: Mass Spectrometry, James, P.E., Ed., Berlin: Springer, 2001.

  21. Bulakhov, A.G., Volkov, P.V., Rozhkova, A.M., Gusakov, A.V., Nemashkalov, V.A., Satrutdinov, A.D., and Sinitsyn, A.P., PLoS One, 2017, vol. 12, no. 1. https://doi.org/10.1371/journal.pone.0170404

    Google Scholar 

  22. Sinitsyn, A.P., Chernoglazov, V.M., and Gusakov, A.V., Itogi Nauki Tekh., Ser.: Biotekhnol., 1990, vol. 25, pp. 30–37.

    Google Scholar 

  23. Frommhagen, M., Sforza, S., Westphal, A.H., Visser, J., Hinz, S.W.A., Koetsier, M.J., van Berkel, W.J.H., Gruppen, H., and Kabel, M.A., Biotechnol. Biofuels, 2015, vol. 8, no. 101, pp. 1–12.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bulakhov.

Additional information

Original Russian Text © A.G. Bulakhov, A.V. Gusakov, A.M. Rozhkova, P.V. Volkov, V.Yu. Matys, I.N. Zorov, A.P. Sinitsyn, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulakhov, A.G., Gusakov, A.V., Rozhkova, A.M. et al. Properties of Chimeric Polysaccharide Monooxygenase with an Attached Cellulose Binding Module and Its Use in the Hydrolysis of Cellulose-Containing Materials in the Composition of Cellulase Complexes. Catal. Ind. 10, 152–158 (2018). https://doi.org/10.1134/S2070050418020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050418020034

Keywords

Navigation