Advertisement

Catalysis in Industry

, Volume 10, Issue 1, pp 49–56 | Cite as

Theoretical Optimization of the Shape and Size of Adsorbent Grains for Associated Petroleum Gas Drying

  • I. A. Zolotarskii
  • L. I. Voennov
  • L. Yu. Zudilina
  • L. A. Isupova
  • R. A. Zotov
  • D. A. Medvedev
  • D. A. Stepanov
  • A. V. Livanova
  • E. P. Meshcheryakov
  • I. A. Kurzina
Engineering Problems. Operation and Production
  • 16 Downloads

Abstract

The shape of adsorbent grains used for drying hydrocarbon gas flows at a reduced hydraulic resistance of their beds are theoretically optimized. A two-velocity model of gas flow in fixed beds consisting of differently shaped holed particles is used for calculations at typical parameters of the associated petroleum gas drying process. It is shown that the optimum shape of a grain is a four-spoke ring. At an equivalent diameter of 3 mm, such a grain is 6.154 × 6.154 mm in size, and its walls and baffles are 1.026 mm thick.

Keywords

associated petroleum gas drying adsorbent grain shape reduced bed hydraulic resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beskov, V.S., Khim. Prom-st', 1990, no. 7, pp. 413–416.Google Scholar
  2. 2.
    Kagyrmanova, A.P., Zolotarskii, I.A., Smirnov, E.I., and Vernikovskaya, N.V., Chem. Eng. J., 2007, vol. 134, nos. 1–3, pp. 228–234.CrossRefGoogle Scholar
  3. 3.
    Hartmann, V.L., Obysov, A.V., Dulnev, A.V., and Afanas’ev, S.V., Chem. Eng. J., 2011, vols. 176–177, pp. 102–105.CrossRefGoogle Scholar
  4. 4.
    Afandizadeh, S. and Foumney, E.A., Appl. Therm. Eng., 2001, vol. 21, no. 6, pp. 669–682.CrossRefGoogle Scholar
  5. 5.
    Smirnov, E.I., Muzykantov, A.V., Kuzmin, V.A., Zolotarskii, I.A., and Kronberg, A.E., Chem. Eng. J., 2003, vol. 91, nos. 2–3, pp. 243–248.CrossRefGoogle Scholar
  6. 6.
    Smirnov, E.I., Muzykantov, A.V., Kuzmin, V.A., Zolotarskii, I.A., Koning, G.W., and Kronberg, A.E., Chem. Sustainable Dev., 2003, vol. 11, no. 1, pp. 293–296.Google Scholar
  7. 7.
    Smirnov, E.I., Kuzmin, V.A., and Zolotarsky, I.A., Chem. Eng. Res. Des., 2004, vol. 82, no. 2, pp. 293–296.CrossRefGoogle Scholar
  8. 8.
    Voennov, L.I. and Zolotarskii, I.A., Theor. Found. Chem. Eng. (in press).Google Scholar
  9. 9.
    Dixon, A.G., Can. J. Chem. Eng., 1988, vol. 66, no. 5, pp. 705–708.CrossRefGoogle Scholar
  10. 10.
    Aerov, M.E. and Todes, O.M., Gidravlicheskie i teplovye osnovy raboty apparatov so statsionarnym i kipyashchim zernistym sloem (Hydraulic and Thermal Foundations of Fixed and Fluidized Granular Bed Apparatuses), Leningrad: Khimiya, 1968.Google Scholar
  11. 11.
    Schwartz, C.E. and Smith, J.M., Ind. Eng. Chem., 1953, vol. 45, no. 6, pp. 1209–1218.CrossRefGoogle Scholar
  12. 12.
    Roblee, L.H.S., Baird, R.M., and Tierney, J.W., Am. Inst. Chem. Eng. J., 1958, vol. 4, no. 4, pp. 460–464.CrossRefGoogle Scholar
  13. 13.
    Lerou, J.J. and Froment, G.F., Chem. Eng. Sci., 1977, vol. 32, no. 8, pp. 853–861.CrossRefGoogle Scholar
  14. 14.
    Sonntag, G., Chem. Ing. Tech., 1960, vol. 32, no. 5, pp. 317–329.CrossRefGoogle Scholar
  15. 15.
    Aerov, M.E., Zavelev, E.D., Semenov, V.P., and Vakk, E.G., Azotn. Prom-st., 1978, no. 3, pp. 24–31.Google Scholar
  16. 16.
    Aerov, M.E. and Umnik, H.H., Zh. Prikl. Khim., 1950, vol. 23, no. 10, pp. 1009–1017.Google Scholar
  17. 17.
    Zhavoronkov, N.M., Teoreticheskie osnovy khimicheskoi tekhnologii (Theoretical Foundations of Chemical Engineering), Moscow: Nauka, 2007.Google Scholar
  18. 18.
    Myasnikov, V.P. and Kotelkin, V.D., in Aeromekhanika (Aeromechanics), Moscow: Nauka, 1976, pp. 307–316.Google Scholar
  19. 19.
    Ergun, S., Chem. Eng. Prog., 1952, vol. 48, no. 2, pp. 89–94.Google Scholar
  20. 20.
    Ergun, S. and Orning, A.A., Ind. Eng. Chem., 1949, vol. 41, no. 6, pp. 1179–1184.CrossRefGoogle Scholar
  21. 21.
    Rester, S., Jouven, J., and Aris, R., Chem. Eng. Sci., 1969, vol. 24, no. 6, pp. 1019–1022.CrossRefGoogle Scholar
  22. 22.
    Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Adsorption Equipment Fundamentals), Moscow: Khimiya, 1984.Google Scholar
  23. 23.
    Pushnov, A., Baltrenas, P., and Kagan, A., Aerodinamika vozdukhoochistnykh ustroistv s zernistym sloem (Aerodynamics of Air Purification Granular-Bed Devices), Vilnyus: Tekhnika, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. A. Zolotarskii
    • 1
  • L. I. Voennov
    • 1
  • L. Yu. Zudilina
    • 1
  • L. A. Isupova
    • 1
    • 2
  • R. A. Zotov
    • 3
  • D. A. Medvedev
    • 3
  • D. A. Stepanov
    • 3
  • A. V. Livanova
    • 2
  • E. P. Meshcheryakov
    • 2
  • I. A. Kurzina
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Salavat Catalyst PlantSalavat-6, Republic of BashkortostanRussia

Personalised recommendations