Catalysis in Industry

, Volume 10, Issue 1, pp 62–67 | Cite as

Preferential CO Oxidation on Bimetallic Pt0.5M0.5 Catalysts (M = Fe, Co, Ni) Prepared from Double Complex Salts

  • D. I. Potemkin
  • E. S. Saparbaev
  • A. V. Zadesenets
  • E. Yu. Filatov
  • P. V. Snytnikov
  • V. A. Sobyanin
Domestic Catalysts
  • 4 Downloads

Abstract

Properties of Pt0.5M0.5 nanopowders (M = Fe, Co, Ni) of alloys obtained via the decomposition of double complex salts [Pt(NH3)5Cl][Fe(C2O4)3] ∙ 4H2O, [Pt(NH3)4][Co(C2O4)2(H2O)2] ∙ 2H2O, and [Pt(NH3)4][Ni(C2O4)2(H2O)2] ∙ 2H2O, respectively, are studied in the reaction of preferential CO oxidation. It is shown that bimetallic Pt0.5M0.5 catalysts (M = Fe, Co, Ni) are much more active in the low temperature range than Pt nanopowder. The activity of the catalysts decreases in the order Pt0.5M0.5 ≥ Pt0.5M0.5 > Pt0.5M0.5 @ Pt. The higher activity of bimetallic Pt0.5M0.5 catalysts in the reaction of preferential CO oxidation in the low-temperature range under conditions of dense Pt surface coverage by adsorbed CO molecules is most likely caused by the activation of CO on Pt atoms, the activation of O2 on atoms of the second metal (Fe, Co, Ni), and the reaction that occurs at the sites of contact between the atoms of platinum and the atoms of the second metal on the surfaces of the alloy’s nanoparticles. The bimetallic systems investigated in this work can be used to improve catalysts of practically important preferential CO oxidation reaction. These systems have considerable potential in the afterburning reactions of CO and hydrocarbons; hydrogenation reactions; electrochemical reactions; and many others. The means used in the preparation of bimetallic nanopowders based on the decomposition of double complex salts is simple, does not require the use of expensive or complex reagents, and can be easily adapted to produce supported catalysts containing Pt0.5M0.5 metal alloys (M = Fe, Co, Ni).

Keywords

preferential CO oxidation bimetallic catalysts double complex salts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buchwalter, P., Rosé, J., and Braunstein, P., Chem. Rev., 2015, vol. 115, no. 1, pp. 28–126.CrossRefGoogle Scholar
  2. 2.
    Yu, W., Porosoff, M.D., and Chen, J.G., Chem. Rev., 2012, vol. 112, no. 11, pp. 5780–5817.CrossRefGoogle Scholar
  3. 3.
    Blaser, H.-U., Malan, C., Pugin, B., Spindler, F., Steiner, H., and Studer, M., Adv. Synth. Catal., 2003, vol. 345, nos. 1–2, pp. 103–151.CrossRefGoogle Scholar
  4. 4.
    Liu, K., Wang, A., and Zhang, T., ACS Catal., 2012, vol. 2, no. 6, pp. 1165–1178.CrossRefGoogle Scholar
  5. 5.
    Kotobuki, M., Watanabe, A., Uchida, H., Yamashita, H., and Watanabe, M., Appl. Catal., A, 2006, vol. 307, no. 2, pp. 275–283.CrossRefGoogle Scholar
  6. 6.
    Potemkin, D.I., Filatov, E.Yu., Zadesenets, A.V., Snytnikov, P.V., Shubin, Yu.V., and Sobyanin, V.A., Chem. Eng. J., 2012, vols. 207–208, pp. 683–689.CrossRefGoogle Scholar
  7. 7.
    Kugai, J., Moriya, T., Seino, S., Nakagawa, T., Ohkubo, Y., Nitani, H., and Yamamoto, T.A., Int. J. Hydrogen Energy, 2013, vol. 38, no. 11, pp. 4456–4465.CrossRefGoogle Scholar
  8. 8.
    Wang, C., Zhang, L., and Liu, Y., Appl. Catal., B, 2013, vols. 136–137, pp. 48–55.CrossRefGoogle Scholar
  9. 9.
    Nguyen, L., Zhang, S., Yoon, S.J., and Tao, F., Chem- CatChem, 2015, vol. 7, no. 15, pp. 2346–2353.Google Scholar
  10. 10.
    Xu, H., Fu, Q., Guo, X., and Bao, X., ChemCatChem, 2012, vol. 4, no. 10, pp. 1645–1652.CrossRefGoogle Scholar
  11. 11.
    Bulushev, D.A., Beloshapkin, S., Plusnin, P.E., Shubin, Yu.V., Bukhtiyarov, V.I., Korenev, S.V., and Ross, J.R.H., J. Catal., 2013, vol. 299, pp. 171–180.CrossRefGoogle Scholar
  12. 12.
    Potemkin, D.I., Semitut, E. Yu., Shubin, Yu.V., Plyusnin, P.E., Snytnikov, P.V., Makotchenko, E.V., Osadchii, D.Yu., Svintsitskiy, D.A., Venyaminov, S.A., Korenev, S.V., and Sobyanin, V.A., Catal. Today, 2014, vol. 235, pp. 103–111.CrossRefGoogle Scholar
  13. 13.
    Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Kenzhin, R.M., Slavinskaya, E.M., Mishakov, I.V., Plyusnin, P.E., and Shubin, Yu.V., Catal. Today, 2014, vol. 238, pp. 80–86.CrossRefGoogle Scholar
  14. 14.
    Churakova, E.M., Badmaev, S.D., Snytnikov, P.V., Gubanov, A.I., Filatov, E.Yu., Plyusnin, P.E., Belyaev, V.D., Korenev, S.V., and Sobyanin, V.A., Kinet. Catal., 2010, vol. 51, no. 6, pp. 893–897.CrossRefGoogle Scholar
  15. 15.
    Simonov, A.N., Plyusnin, P.E., Shubin, Yu.V., Kvon, I.R., Korenev, S.V., and Parmon, V.N., Electrochim. Acta, 2012, vol. 76, pp. 344–353.CrossRefGoogle Scholar
  16. 16.
    Potemkin, D.I., Snytnikov, P.V., Semitut, E.Yu., Plyusnin, P.E., Shubin, Yu.V., and Sobyanin, V.A., Catal. Ind., 2014, vol. 6, no. 1, pp. 36–43.CrossRefGoogle Scholar
  17. 17.
    Potemkin, D.I., Filatov, E.Yu., Zadesenets, A.V., and Sobyanin, V.A., Catal. Commun., 2017, vol. 100, pp. 232–236.CrossRefGoogle Scholar
  18. 18.
    Zadesenets, A., Filatov, E., Plyusnin, P., Baidina, I., Dalezky, V., Shubin, Yu., Korenev, S., and Bogomyakov, A., Polyhedron, 2011, vol. 30, no. 7, pp. 1305–1312.CrossRefGoogle Scholar
  19. 19.
    Yusenko, K.V., Vasil’chenko, D.B., Zadesenets, A.V., Baidina, I.A., Shubin, Yu.V., and Korenev, S.V., Russ. J. Inorg. Chem., 2007, vol. 52, no. 10, pp. 1487–1491.CrossRefGoogle Scholar
  20. 20.
    Snytnikov, P., Belyaev, V., and Sobyanin, V., Kinet. Catal., 2007, vol. 48, no. 1, pp. 93–102.CrossRefGoogle Scholar
  21. 21.
    An, K., Alayoglu, S., Musselwhite, N., Plamthottam, S., Melaet, G., Lindeman, A.E., and Somorjai, G.A., J. Am. Chem. Soc., 2013, vol. 135, no. 44, pp. 16689–16696.CrossRefGoogle Scholar
  22. 22.
    Mashkovtsev, M.A., Khudorozhkov, A.K., Beck, I.E., Porsin, A.V., Prosvirin, I.P., Rychkov, V.N., and Bukhtiyarov, V.I., Catal. Ind., 2011, vol. 3, no.4, pp. 350–357.CrossRefGoogle Scholar
  23. 23.
    De, S., Zhang, J., Luque, R., and Yan, N., Energy Environ. Sci., 2016, vol. 9, pp. 3314–3347.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. I. Potemkin
    • 1
    • 2
  • E. S. Saparbaev
    • 1
    • 2
  • A. V. Zadesenets
    • 1
    • 3
  • E. Yu. Filatov
    • 1
    • 3
  • P. V. Snytnikov
    • 1
    • 2
  • V. A. Sobyanin
    • 2
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations