Advertisement

Catalysis in Industry

, Volume 10, Issue 1, pp 41–48 | Cite as

Sodium Methoxide Catalyzed Depolymerization of Waste Polyethylene Terephthalate Under Microwave Irradiation

  • Mahmoud A. Mohsin
  • Mohamed A. Alnaqbi
  • Reneesh M. Busheer
  • Yousef Haik
Catalysis and Environmental Protection
  • 36 Downloads

Abstract

Chemical recycling of polyethylene terephthalate (PET) to produce terephthalic acid (TPA) was studied using in situ hydrolysis with sodium methoxide in methanol and dimethyl sulfoxide (DMSO) as solvent under microwave irradiation. The microwave-assisted reaction was carried out at different temperatures, and reaction time between 5 to 30 min. High degrees of depolymerization were examined at temperature near 70°C at microwave power 300 W. The reaction was carried out in a sealed microwave reactor in which the time and temperature were controlled and recorded. The products were mainly monomers such as TPA and ethylene glycol (EG) which were isolated and purified for further analysis. Monomethyl terephthalate, dimethyl terephthalate, and terephthalic acid were formed initially then converted to TPA as a single monomer product. Purified, TPA was analyzed and identified by NMR, TGA, DSC and FTIR. It was observed that the reaction greatly depends on the amount of sodium methoxide, the volume of methanol and DMSO used, the reaction time, and temperature. Compared to conventional heating methods, the time needed to achieve complete degradation of PET was significantly reduced to 5 min by using microwave irradiation and sodium methoxide catalyst. This has led to substantial saving in energy and cost supporting the conclusion that this proposed recycling process is very beneficial for the recycling of PET wastes.

Keywords

poly(ethylene terephthalate) PET waste depolymerization sodium methoxide microwave irradiation terephthalic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Awaja, F. and Pavel, D., Eur. Polym. J., 2005, vol. 41, no. 7, pp. 1453–1477.CrossRefGoogle Scholar
  2. 2.
    Zhang, H. and Wen, Z.-G., Waste Manage., 2014, vol. 34, no. 6, pp. 987–998.CrossRefGoogle Scholar
  3. 3.
    Siddiqui, M.N., Redhwi, H.H., and Achilias, D.S., J. Anal. Appl. Pyrolysis, 2012, vol. 98, pp. 214–220.CrossRefGoogle Scholar
  4. 4.
    Tuna, Ö., Bal, A., and Güçlü, G., Polym. Eng. Sci., 2013, vol. 53, no. 1, pp. 176–182.CrossRefGoogle Scholar
  5. 5.
    Torres, N., Robin, J.J., and Boutevin, B., Eur. Polym. J., 2000, vol. 36, no. 10, pp. 2075–2080.CrossRefGoogle Scholar
  6. 6.
    Paszun, D. and Spychaj, T., Ind. Eng. Chem. Res., 1997, vol. 36, no. 4, pp. 1373–1383.CrossRefGoogle Scholar
  7. 7.
    Karayannidis, G.P. and Achilias, D.S., Macromol. Mater. Eng., 2007, vol. 292, no. 2, pp. 128–146.CrossRefGoogle Scholar
  8. 8.
    Pingale, N.D. and Shukla, S.R., Eur. Polym. J., 2008, vol. 44, no. 12, pp. 4151–4156.CrossRefGoogle Scholar
  9. 9.
    Nikles, D.E. and Farahat, M.S., Macromol. Mater. Eng., 2005, vol. 290, no. 1, pp. 13–30.CrossRefGoogle Scholar
  10. 10.
    Achilias, D.S., Tsintzou, G.P., Nikolaidis, A.K., Bikiaris, D.N., and Karayannidis, G.P., Polym. Int., 2011, vol. 60, no. 3, pp. 500–506.CrossRefGoogle Scholar
  11. 11.
    Siddiqui, M.N., Achilias, D.S., Redhwi, H.H., Bikiaris, D.N., Katsogiannis, K.-A.G., and Karayannidis, G.P., Macromol. Mater. Eng., 2010, vol. 295, no. 6, pp. 575–584.CrossRefGoogle Scholar
  12. 12.
    Grause, G., Handa, T., Kameda, T., Mizoguchi, T., and Yoshioka, T., Chem. Eng. J., 2011, vol. 166, no. 2, pp. 523–528.CrossRefGoogle Scholar
  13. 13.
    Mishra, S., Zope, V.S., and Goje, A.S., J. Appl. Polym. Sci., 2003, vol. 90, no. 12, pp. 3305–3309.CrossRefGoogle Scholar
  14. 14.
    Yang, Y., Lu, Y., Xiang, H., Xu, Y., and Li, Y., Polym. Degrad. Stab., 2002, vol. 75, no. 1, pp. 185–191.CrossRefGoogle Scholar
  15. 15.
    Chen, W. and McCarthy, T.J., Macromolecules, 1998, vol. 31, no. 11, pp. 3648–3655.CrossRefGoogle Scholar
  16. 16.
    Yoshioka, T., Ota, M., and Okuwaki, A., Ind. Eng. Chem. Res., 2003, vol. 42, no. 4, pp. 675–679.CrossRefGoogle Scholar
  17. 17.
    Liu, F., Cui, X., Yu, S., Li, Z., and Ge, X., J. Appl. Polym. Sci., 2009, vol. 114, no. 6, pp. 3561–3565.CrossRefGoogle Scholar
  18. 18.
    Yue, Q.F., Wang, C.X., Zhang, L.N., Ni, Y., and Jin, Y.X., Polym. Degrad. Stab., 2011, vol. 96, no. 4, pp. 399–403.CrossRefGoogle Scholar
  19. 19.
    Wang, H., Liu, Y., Li, Z., Zhang, X., Zhang, S., and Zhang, Y., Eur. Polym. J., 2009, vol. 45, no. 5, pp. 1535–1544.CrossRefGoogle Scholar
  20. 20.
    Genta, M., Iwaya, T., Sasaki, M., and Goto, M., Waste Manage., 2007, vol. 27, no. 9, pp. 1167–1177.CrossRefGoogle Scholar
  21. 21.
    Kurokawa, H. and Ohshima, M.-A., Sugiyama, K., and Miura, H., Polym. Degrad. Stab., 2003, vol. 79, no. 3, pp. 529–533.CrossRefGoogle Scholar
  22. 22.
    Das, J., Halgeri, A.B., Sahu, V., and Parikh, P.A., Indian J. Chem. Technol., 2007, vol. 14, no. 2, pp. 173–177.Google Scholar
  23. 23.
    Kosmidis, V.A., Achilias, D.S., and Karayannidis, G.P., Macromol. Mater. Eng., 2001, vol. 286, no. 10, pp. 640–647.CrossRefGoogle Scholar
  24. 24.
    Karayannidis, G.P., Chatziavgoustis, A.P., and Achilias, D.S., Adv. Polym. Technol., 2002, vol. 21, no. 4, pp. 250–259.CrossRefGoogle Scholar
  25. 25.
    Oku, A., Hu, L.-C., and Yamada, E., J. Appl. Polym. Sci., 1997, vol. 63, no. 5, pp. 595–601.CrossRefGoogle Scholar
  26. 26.
    Kao, C.-Y., Wan, B.-Z., and Cheng, W.-H., Ind. Eng. Chem. Res., 1998, vol. 37, no. 4, pp. 1228–1234.CrossRefGoogle Scholar
  27. 27.
    Liu, L. and Zhang, D., An, L., Zhang, H., and Tian, Y., J. Appl. Polym. Sci., 2005, vol. 95, no. 3, pp. 719–723.CrossRefGoogle Scholar
  28. 28.
    Yoshioka, T., Motoki, T., and Okuwaki, A., Ind. Eng. Chem. Res., 2001, vol. 40, no. 1, pp. 75–79.CrossRefGoogle Scholar
  29. 29.
    Yoshioka, T., Okayama, N., and Okuwaki, A., Ind. Eng. Chem. Res., 1998, vol. 37, no. 2, pp. 336–340.CrossRefGoogle Scholar
  30. 30.
    Mehrabzadeh, M., Shodjaei, S.T., and Khosravi, M., Iran. Polym. J., 2000, vol. 9, no. 1, pp. 37–40.Google Scholar
  31. 31.
    López-Fonseca, R., González-Velasco, J.R., and Gutiérrez-Ortiz, J.I., Chem. Eng. J., 2009, vol. 146, no. 2, pp. 287–294.CrossRefGoogle Scholar
  32. 32.
    Paliwal, N.R. and Mungray, A.K., Polym. Degrad. Stab., 2013, vol. 98, no. 10, pp. 2094–2101.CrossRefGoogle Scholar
  33. 33.
    Manju, Roy, P.K., Ramanan, A., and Rajagopal, C., Mater. Lett., 2013, vol. 106, pp. 390–392.CrossRefGoogle Scholar
  34. 34.
    Kržan, A., Polym. Adv. Technol., 1999, vol. 10, no. 10, pp. 603–606.CrossRefGoogle Scholar
  35. 35.
    Nikje, M.M.A. and Nazari, F., Adv. Polym. Technol., 2006, vol. 25, no. 4, pp. 242–246.CrossRefGoogle Scholar
  36. 36.
    Lidström, P., Tierney, J., Wathey, B., and Westman, J., Tetrahedron, 2001, vol. 57, no. 45, pp. 9225–9283.CrossRefGoogle Scholar
  37. 37.
    Fini, A. and Breccia, A., Pure Appl. Chem., 1999, vol. 71, no. 4, pp. 573–579.CrossRefGoogle Scholar
  38. 38.
    Namboori, C.G.G. and Haith, M.S., J. Appl. Polym. Sci., 1968, vol. 12, no. 9, pp. 1999–2005.CrossRefGoogle Scholar
  39. 39.
    Khalaf, H.I. and Hasan, O.A., Chem. Eng. J., 2012, vol. 192, pp. 45–48.CrossRefGoogle Scholar
  40. 40.
    Kimyonok, A.B.E. and Ulutürk, M., J. Energ. Mater., 2016, vol. 34, no. 2, pp. 113–122.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Mahmoud A. Mohsin
    • 1
  • Mohamed A. Alnaqbi
    • 2
  • Reneesh M. Busheer
    • 2
  • Yousef Haik
    • 3
  1. 1.Department of ChemistryUniversity of SharjahSharjahUnited Arab Emirates
  2. 2.Department of ChemistryUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  3. 3.College of Science and EngineeringHamad Bin Khalifa UniversityDohaQatar

Personalised recommendations