Catalysis in Industry

, Volume 10, Issue 1, pp 68–74 | Cite as

Biocatalytic Heterogeneous Processes of the Esterification of Saturated Fatty Acids with Aliphatic Alcohols

  • G. A. Kovalenko
  • L. V. Perminova
  • A. B. Beklemishev
  • A. L. Mamaev
  • Yu. V. Patrushev


Heterogeneous biocatalysts prepared by immobilizing a recombinant lipase from Thermomyces lanuginosus on mesoporous inorganic supports—silica (SiO2), alumina (Al2O3), and titania (TiO2)—are comparatively studied in the esterification of fatty acids with aliphatic alcohols. It is found that the T. lanuginosus lipase adsorbed on silica has the highest esterifying activity, while the lipase adsorbed on titania is completely inactivated. SiO2-based catalysts have high activity and stability in the esterification of saturated fatty acids containing 4–18 carbon atoms (C4–C18) with aliphatic alcohols (C5–C16) in organic solvents (hexane and diethyl ether). The catalysts operate in this reaction for several tens of reaction cycles (>40) without loss of activity. The recombinant rPichia/lip lipase immobilized on silica exhibits the most pronounced specificity for its first substrate, a fatty acid. For instance, the rate of synthesis for esters of low molecular weight acids (С4–С6) is three to four times slower than for the esters of acids with more than seven carbon atoms. The catalyst has a relatively broad specificity for the second substrate, an aliphatic alcohol. It is found that the ester of enanthic acid (C7:0) and butanol (C4) is synthesized at the maximum rate.


biocatalysts recombinant lipase esterification fatty acids aliphatic alcohols 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voitkevich, S.A., 865 dushistykh veshchestv dlya parfyumerii i bytovoi khimii (865 Fragrances for Perfumery and Household Detergents), Moscow: Pishchevaya promyshlennost’, 1994.Google Scholar
  2. 2.
    Soldatenkov, A.T., Kolyadina, N.M., and Le Tuan Anh, Osnovy organicheskoi khimii dushistykh veshchestv dlya prikladnoi estetiki i aromaterapii (Foundations of Organic Chemistry of Fragrances for Applied Aesthetics and Aromatherapy), Moscow: Akademkniga, 2006.Google Scholar
  3. 3.
    Handbook of Industrial Biocatalysis, Hou., C.T., Ed., Boca Raton, FL: Taylor &. Francis/CRC, 2005.Google Scholar
  4. 4.
    Ferrer, M., Soliveri, J., Plou, F.J., López-Cortés, N., Reyes-Duarte, D., Christensen, M., Copa-Patiño, J.L., and Ballesteros, A., Enzyme Microb. Technol., 2005, vol. 36, no. 4, pp. 391–398.CrossRefGoogle Scholar
  5. 5.
    Chang, S.W. and Shaw, J.F., New Biotechnol., 2009, vol. 26, nos. 3/4, pp. 109–116.CrossRefGoogle Scholar
  6. 6.
    De Almeida, R.M., Souza, F.T.C., Júnior, A.C., Albuquerque, N.J.A., Meneghetti, S.M.P., and Meneghetti, M.R., Catal. Commun., 2014, vol. 46, pp. 179–182.CrossRefGoogle Scholar
  7. 7.
    Stergiou, P.-Y., Foukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L.G., Hatziloukas, E., Afendra, A., Pandey, A., and Papamichael, E.M., Biotechnol. Adv., 2013, vol. 31, no. 8, pp. 1846–1859.CrossRefGoogle Scholar
  8. 8.
    Gumel, A.M., Annuar, M.S.M., Heidelberg, T., and Chisti, Y., Process Biochem., 2011, vol. 46, no. 11, pp. 2079–2090.CrossRefGoogle Scholar
  9. 9.
    Sun, J., Lee, L.W.W., and Liu, S.Q., Aust. J. Chem., 2014, vol. 67, no. 10, pp. 1373–1381.CrossRefGoogle Scholar
  10. 10.
    Villeneuve, P., Biotechnol. Adv., 2007, vol. 25, no. 6, pp. 515–536.CrossRefGoogle Scholar
  11. 11.
    Bezborodov, A.M. and Zagustina, N.A., Appl. Biochem. Microbiol., 2014, vol. 50, no. 4, pp. 313–337.CrossRefGoogle Scholar
  12. 12.
    Halling, P.J., Enzyme Microb. Technol., 1994, vol. 16, no. 3, pp. 178–206.CrossRefGoogle Scholar
  13. 13.
    Gamayurova, V.S., Zinov’eva, M.E., and Elizarova, E.V., Katal. Prom-sti, 2008, no. 3, pp. 54–58.Google Scholar
  14. 14.
    Gamayurova, V.S., Zinov’eva, M.E., Kalachev, N.V., and Shnaider, K.L., Catal. Ind., 2015, vol. 7, no. 3, pp. 239–243.CrossRefGoogle Scholar
  15. 15.
    Gamayurova, V.S., Shnaider, K.L., and Jamai, M.J., Catal. Ind., 2016, vol. 9, no. 1, pp. 85–90.CrossRefGoogle Scholar
  16. 16.
    Samoilova, Yu.V., Piligaev, A.V., Sorokina, K.N., Rozanov, A.S., Pel’tek, S.E., Novikov, A.A., Al’myasheva, N.R., and Parmon, V.N., Katal. Prom-sti, 2015, no. 6, pp. 90–96.Google Scholar
  17. 17.
    Stamatis, H., Xenakis, A., Provelegiou, M., and Kolisis, F.N., Biotechnol. Bioeng., 1993, vol. 42, no. 1, pp. 103–110.CrossRefGoogle Scholar
  18. 18.
    Gandhi, N.N. and Mukherjee, K.D., J. Am. Oil Chem. Soc., 2001, vol. 78, no. 2, pp. 161–165.CrossRefGoogle Scholar
  19. 19.
    Arsan, J. and Parkin, K.L., Biotechnol. Bioeng., 2000, vol. 69, no. 2, pp. 222–226.CrossRefGoogle Scholar
  20. 20.
    Talon, R., Montel, M.-C., and Berdague, J.-L., Enzyme Microb. Technol., 1996, vol. 19, no. 8, pp. 620–622.CrossRefGoogle Scholar
  21. 21.
    Naik, S., Basu, A., Saikia, R., Madan, B., Paul, P., Chaterjee, R., Brask, J., and Svendsen, A., J. Mol. Catal. B: Enzym., 2010, vol. 65, nos. 1–4, pp. 18–23.CrossRefGoogle Scholar
  22. 22.
    Bearden, J.C., Biochim. Biophys. Acta, 1978, vol. 533, pp. 525–529.CrossRefGoogle Scholar
  23. 23.
    Kovalenko, G.A., Perminova, L.V., Chuenko, T.V., Rudina, N.A., Moseenkov, S.I., and Kuznetsov, V.L., Kinet. Catal., 2013, vol. 54, no. 6, pp. 749–760.CrossRefGoogle Scholar
  24. 24.
    Kovalenko, G.A., Perminova, L.V., Chuenko, T.V., and Rudina, N.A., Appl. Biochem. Microbiol., 2016, vol. 52, no. 6, pp. 582–588.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. A. Kovalenko
    • 1
    • 2
  • L. V. Perminova
    • 1
  • A. B. Beklemishev
    • 1
    • 3
  • A. L. Mamaev
    • 3
  • Yu. V. Patrushev
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Biochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations