Catalysis in Industry

, Volume 10, Issue 1, pp 1–8 | Cite as

Hydrogen Sulfide-Resistant Bifunctional Catalysts for the Steam Reforming of Methane: Activity and Structural Evolution

  • G. I. Konstantinov
  • S. S. Kurdyumov
  • Yu. V. Maksimov
  • O. V. Bukhtenko
  • M. V. Tsodikov
Catalysis in Chemical and Petrochemical Industry
  • 3 Downloads

Abstract

Results are presented from studying an iron–nickel catalyst for the steam reforming of methane, synthesized by epitaxial coating on the surface of spherical pellets of commercial γ-Al2O3. It is shown the catalyst is resistant to the presence of hydrogen sulfide in a steam–gas mixture. The degree of conversion of methane during reforming is close to equilibrium at a pressure of 2.0 MPa, a temperature of 800°C, a ratio of Н2О: СН4 = 2: 1, a feedstock hourly space velocity (FHSV) of 6000 h−1, and a H2S concentration of 30 ppm. The structural evolution and phase state of the active components of the system are studied via X-ray diffraction analysis, transmission electron microscopy (TEM), and Mössbauer spectroscopy. The formation of paramagnetic iron oxide clusters tightly bound to the structure of the support, and of FeNi3 iron–nickel alloy particles on the surface of the catalyst, is responsible for the polyfunctional properties of the catalyst, which displays high activity in both the steam reforming of methane and the oxidative decomposition of hydrogen sulfide to elemental sulfur.

Keywords

steam reforming methane hydrogen sulfide hydrogen core–shell nickel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Q.H., Li, Y., and Xu, B.Q., Prepr. Pap.—Am. Chem. Soc., Div. Fuel Chem., 2004, vol. 49, no. 1, pp. 138–139.Google Scholar
  2. 2.
    Horn, R., Williams, K.A., Degenstein, N.J., and Schmidt, L.D., J. Catal., 2006, vol. 242, no. 1, pp. 92–102.CrossRefGoogle Scholar
  3. 3.
    Ishihara, A., Qian, E.W., Finahari, I.N., Sutrisna, I. P., and Kabe, T., Fuel, 2005, vol. 84, nos. 12–13, pp. 1462–1468.Google Scholar
  4. 4.
    Souza, M.M.V.M., Neto, O.R.M., and Schmal, M., J. Nat. Gas Chem., 2006, vol. 15, no. 1, pp. 21–27.CrossRefGoogle Scholar
  5. 5.
    Zeppieri, M., Villa, P.L., Verdone, N., Scarsella, M., and De Filippis, P., Appl. Catal., A, 2010, vol. 387, nos.1–2, pp. 147–154.CrossRefGoogle Scholar
  6. 6.
    Oliveira, E.L.G., Grande, C.A., and Rodrigues, A.E., Can. J. Chem. Eng., 2009, vol. 87, no. 6, pp. 945–956.CrossRefGoogle Scholar
  7. 7.
    Gangadharan, P., Kanchi, K.C., and Lou, H.H., Chem. Eng. Res. Des., 2012, vol. 90, no. 11, pp. 1956–1968.CrossRefGoogle Scholar
  8. 8.
    Tsodikov, M.V., Kurdyumov, S.S., Konstantinov, G.I., Murzin, V.Yu., Maksimov, Yu.V., Korchak, V.N., and Suzdalev, I.P., Nanotechnol. Russ., 2012, vol. 7, nos. 9–10, pp. 463–470.CrossRefGoogle Scholar
  9. 9.
    Shi, Q., Peng, Z., Chen, W., and Zhang, N., J. Rare Earths, 2011, vol. 29, no. 9, pp. 861–865.CrossRefGoogle Scholar
  10. 10.
    Pino, L., Vita, A., Cipitì, F., Laganà, M., and Recupero, V., Appl. Catal., B, 2011, vol. 104, nos. 1–2, pp. 64–73.CrossRefGoogle Scholar
  11. 11.
    Tsodikov, M.V., Kurdyumov, S.S., Murzin, V.Yu., Maksimov, Yu.V., Imshennik, V.K., Novichikhin, S.V., Maksimovskii, E.A., and Kriventsov, V.V., Nanotechnol. Russ., 2012, vol. 7, nos. 9–10, pp. 471–481.CrossRefGoogle Scholar
  12. 12.
    Pakhomov, N.A., Nauchnye osnovy prigotovleniya katalizatorov: vvedenie v teoriyu i praktiku (Scientific Foundations of Catalyst Preparation: Introduction to Theory and Practice), Novosibirsk: Sib, Otd. Ross. Akad. Nauk, 2011.Google Scholar
  13. 13.
    PDF-2 Data Base (Sets 1-47), International Centre for Diffraction Data, 1997.Google Scholar
  14. 14.
    Technology for the Preparation of New-Generation Nanostructured Natural Gas Conversion Catalysts. Report on State Contract no. 8411.1003702.16.240 (code “Conversion”), 2008.Google Scholar
  15. 15.
    Grunval’d, V.R., Tekhnologiya gazovoi sery (Gaseous Sulfur Technology), Moscow: Khimiya, 1992.Google Scholar
  16. 16.
    Neftepererabotka i Neftekhimiya: Sbornik nauchnykh trudov (Oil Refining and Petrochemistry: Collection of Research Papers), Khairudinov, I.R., Akhmetov, M.M., and Zaitseva, S.A., Eds., Ufa: Sterkh, 2001, vol. 33.Google Scholar
  17. 17.
    Amirov, Ya.S., Gimaev, R.N. and Saifullin, N.R., Tekhniko-ekonomicheskie aspekty promyshlennoi ekologii (Technical and Economic Aspects of Industrial Ecology), Ufa: Ufim. Gos. Neft. Tekhn. Univ., 1999, part 5.Google Scholar
  18. 18.
    Jastrzębska, I., Szczerba, J., Stoch, P., Błachowski, A., Ruebenbauer, K., Prorok, R., and Śnieżek, E., Nukleonika, 2015, vol. 60, no. 1, pp. 47–49.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. I. Konstantinov
    • 1
  • S. S. Kurdyumov
    • 1
  • Yu. V. Maksimov
    • 2
  • O. V. Bukhtenko
    • 1
  • M. V. Tsodikov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations