Skip to main content

Catalyst for selective hydrotreating of catalytic cracking gasoline without preliminary fractionation

Abstract

A new CoMo catalyst for selective hydrotreating of FCC gasoline has been developed; the catalyst is intended for the production of hydrotreated gasoline with up to 10 ppm of sulfur and with a research octane number decreased by less than 1.0. The new catalyst allows hydrotreating of FCC gasoline without its preliminary separation into the light and heavy fractions. The hydrotreating conditions were as follows: hourly space velocity 2.2 h–1, temperature 270°C, pressure 2.5 MPa, H2/feed = 150 m3/m3. The high degree of hydrodesulfurization at minimum decrease in the octane number is achieved due to the high activity of the developed catalyst in hydrodesulfurization of the sulfur-containing components of the feedstock and conversion of reactive high-octane olefins of FCC gasoline into less reactive derivatives with high octane numbers. The catalyst is a CoMoS phase deposited on a support containing amorphous aluminosilicate and γ-Al2O3. The method for the preparation of the catalyst is adapted to the equipment of Russian plants and feedstocks. The parameters of hydrotreating using this catalyst ensure the hydrotreating of FCC gasoline to a residual sulfur content of less than 10 ppm with minimum redesign of the equipment currently available at Russian refineries.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Brunet, S., Mey, D., Pérot, G., Bouchy, C., and Diehl, F., Appl. Catal., A, 2005, vol. 278, no. 2, pp. 143–172.

    CAS  Article  Google Scholar 

  2. 2.

    Syed, A.A. and Nadhir, A.A.-B., Abstract of Papers, Proc. 14th Annual Saudi-Japan Symp. “Catalysts in Petroleum Refining and Petrochemicals”, Dhahran, Saudi Arabia, 2004.

    Google Scholar 

  3. 3.

    Klimov, O.V., Leonova, K.A., Koryakina, G.I., Gerasimov, E.Yu., Prosvirin, I.P., Cherepanova, S.V., Budukva, S.V., Pereyma, V.Yu., Dik, P.P., Parakhin, O.A., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 66–77.

    Google Scholar 

  4. 4.

    Topsøe, H., Appl. Catal., A, 2007, vol. 322, pp. 3–8.

    Article  Google Scholar 

  5. 5.

    Toba, M., Miki, Y., Matsui, T., Harada, M., and Yoshimura, Y., Appl. Catal., B, 2007, vol. 70, nos. 1–4, pp. 542–547.

    CAS  Article  Google Scholar 

  6. 6.

    Li, D., Li, M., Chu, Y., Nie, H., and Shi, Y., Catal. Today, 2003, vol. 81, no. 1, pp. 65–73.

    CAS  Article  Google Scholar 

  7. 7.

    Pérez-Martínez, D.J., Gaigneaux, E.M., Giraldo, S.A., and Centeno, A., J. Mol. Catal. A: Chem., 2011, vol. 335, nos. 1–2, pp. 112–120.

    Article  Google Scholar 

  8. 8.

    Huo, Q., Dou, T., Zhao, Z., and Pan, H., Appl. Catal., A, 2010, vol. 381, nos. 1–2, pp. 101–108.

    CAS  Article  Google Scholar 

  9. 9.

    Hancsók, J., Szoboszlai, Z., Kasza, T., Holló, A., Thernesz, A., and Kalló, D., Catal. Today, 2011, vol. 176, no. 1, pp. 177–181.

    Article  Google Scholar 

  10. 10.

    Jaimes, L., Badillo, M., and de Lasa, H., Fuel, 2011, vol. 90, no. 5, pp. 2016–2025.

    CAS  Article  Google Scholar 

  11. 11.

    RF Patent 2575637, 2016.

  12. 12.

    RF Patent 2575638, 2016.

  13. 13.

    RF Patent 2575639, 2016.

  14. 14.

    Dik, P.P., Klimov, O.V., Koryakina, G.I., Leonova, K.A., Pereyma, V.Yu., Budukva, S.V., Gerasimov, E.Yu., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 124–132.

    Article  Google Scholar 

  15. 15.

    Laurenti, D., Phung-Ngoc, B., Roukoss, C., Devers, E., Marchand, K., Massin, L., Lemaitre, L., Legens, C., Quoineaud, A.-A., and Vrinat, M., J. Catal., 2013, vol. 297, pp. 165–175.

    CAS  Article  Google Scholar 

  16. 16.

    Okamoto, Y., Hioka, K., Arakawa, K., Fujikawa, T., Ebihara, T., and Kubota, T., J. Catal., 2009, vol. 268, no. 1, pp. 49–59.

    CAS  Article  Google Scholar 

  17. 17.

    Nadeina, K.A., Klimov, O.V., Pereima, V.Yu., Koryakina, G.I., Danilova, I.G., Prosvirin, I.P., Gerasimov, E.Yu., Yegizariyan, A.M., and Noskov, A.S., Catal. Today, 2016, vol. 271, pp. 4–15.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. A. Abrashenkov.

Additional information

Original Russian Text © K.A. Nadeina, V.Yu. Pereima, O.V. Klimov, G.I. Koryakina, A.S. Noskov, D.O. Kondrashev, A.V. Kleymenov, O.S. Vedernikov, S.E. Kuznetsov, V.V. Galkin, P.A. Abrashenkov, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nadeina, K.A., Pereima, V.Y., Klimov, O.V. et al. Catalyst for selective hydrotreating of catalytic cracking gasoline without preliminary fractionation. Catal. Ind. 9, 230–238 (2017). https://doi.org/10.1134/S2070050417030096

Download citation

Keywords

  • hydrotreatment
  • technologies
  • catalysts
  • FCC gasoline
  • octane number