Skip to main content
Log in

Studying the thermal conversion of acetone lignin in supercritical butanol in the presence of NiCuMo/SiO2 catalysts

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Existing and emerging technologies for the chemical processing of wood are mainly aimed at transforming its cellulose component into target products. In these processes, lignin is produced on a large scale as a waste product, but there are no advanced ways of processing it. This work investigates the effect NiCuМо/SiO2 catalysts have on the thermal transformation of acetone lignin in supercritical butanol at temperatures of 280, 300, and 350°C. The resulting liquid products are studied via gas–liquid chromatography mass spectrometry, and 13С NMR spectroscopy. It is found that butanol undergoes almost no thermochemical conversions at temperatures below 300°C. Catalysts raise its level of conversion to 36–40 wt %. Under the effect of NiCuМо/SiO2 catalysts, the yield of hexane-soluble products of acetone lignin thermal conversion at 300°C increases by a factor of 2.4, while the yield of solid residue falls by approximately a factor of 3.3. Catalysts reduce the relative content of methoxyphenols in hexane-soluble products: the content of syringol in particular falls by a factor of 14. According to 13С NMR spectroscopy, the catalytic transformation of acetone lignin to liquid acetone-soluble products is accompanied by the breaking of β–О–4 chemical bonds between the structural fragments of lignin and a reduction in the content of methoxyl groups, primarily in the syringyl structural units of the resulting products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biofuels: Alternative Feedstocks and Conversion Processes, Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.-G., and Gnansounou, E., Eds., Oxford Academic, 2011.

  2. Nelson, V., Introduction to Renewable Energy, Boca Raton, FL CRC, 2011.

    Google Scholar 

  3. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., and Weckhuysen, B.M., Chem. Rev., 2010, vol. 110, no. 6, pp. 3552–3599.

    Article  CAS  Google Scholar 

  4. Vázquez, G., Rodríguez-Bona, C., Freire, S., González-Álvarez, J., and Antorrena, G., Bioresour. Technol., 1999, vol. 70, no. 2, pp. 209–214.

    Article  Google Scholar 

  5. Park, Y., Doherty, W.O.S., and Halley, P.J., Ind. Crops Prod., 2008, vol. 27, no. 2, pp. 163–167.

    Article  CAS  Google Scholar 

  6. Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., and Belgacem, M.N., React. Funct. Polym., 2011, vol. 71, no. 8, pp. 863–869.

    Article  CAS  Google Scholar 

  7. Kim, J.-Y., Park, J., Hwang, H., Kim, J.K., Song, I.K., and Choi, J.W., J. Anal. Appl. Pyrolysis, 2015, vol. 113, pp. 99–106.

    Article  CAS  Google Scholar 

  8. Huang, X., Korányi, T.I., Boot, M.D., and Hensen, E.J.M., ChemSusChem, 2014, vol. 7, no. 8, pp. 2276–2288.

    Article  CAS  Google Scholar 

  9. Kuznetsov, B.N., Sharypov, V.I., Chesnokov, N.V., Beregovtsova, N.G., Baryshnikov, S.V., Lavrenov, A.V., Vosmerikov, A.V., and Agabekov, V.E. Kinet. Catal., 2015, vol. 56, no. 4, pp. 434–441.

  10. Kim, J.-Y., Park, J., Kim, U.-J., and Choi, J.W., Energy Fuels, 2015, vol. 29, no. 8, pp. 5154–5163.

    Article  CAS  Google Scholar 

  11. Hu, J., Shen, D., Wu, S., Zhang, H., and Xiao, R., Energy Fuels, 2014, vol. 28, no. 7, pp. 4260–4266.

    Article  CAS  Google Scholar 

  12. Warner, G., Hansen, T.S., Riisager, A., Beach, E.S., Barta, K., and Anastas, P.T., Bioresour. Technol., 2014, vol. 161, pp. 78–83.

    Article  CAS  Google Scholar 

  13. Sharypov, V.I., Kuznetsov, B.N., Yakovlev, V.A., Beregovtsova, N.G., Baryshnikov, S.V., Djakovitch, L., and Pinel, C., Zh. Sib. Fed. Univ., Khim., 2015, vol. 8, no. 3, pp. 465–475.

    Article  Google Scholar 

  14. Kleinert, M. and Barth, T., Energy Fuels, 2008, vol. 22, no. 2, pp. 1371–1379.

    Article  CAS  Google Scholar 

  15. Macala, G.S., Matson, T.D., Johnson, C.L., Lewis, R.S., Iretskii, A.V., and Ford, P.C., ChemSusChem, 2009, vol. 2, no. 3, pp. 215–217.

    Article  CAS  Google Scholar 

  16. Heitner, C., Dimmel, D.R., and Schmidt, J.A., Lignin and Lignans: Advances in Chemistry, Boca Raton, FL CRC, 2010.

    Book  Google Scholar 

  17. Huijgen, W.J.J., Reith, J.H., and Uil, H., Ind. Eng. Chem. Res., 2010, vol. 49, no. 20, pp. 10132–10140.

    Article  CAS  Google Scholar 

  18. Zhao, X., Cheng, K., and Liu, D., Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 5, pp. 815–819.

    Article  CAS  Google Scholar 

  19. Ennaert, T., van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D., and Sels, B.F., Chem. Soc. Rev., 2016, vol. 45, no. 3, pp. 584–611.

    Article  CAS  Google Scholar 

  20. Wang, H., Tucker, M., and Ji, Y., J. Appl. Chem., 2013, vol. 2013. doi 10.1155/2013/838645

  21. Sturgeon, M.R., O’Brien, M.H., Ciesielski, P.N., Katahira, R., Kruger, J.S., Chmely, S.C., Hamlin, J., Lawrence, K., Hunsinger, G.B., Foust, T.D., Baldwin, R.M., Biddy, M.J., and Beckham, G.T., Green Chem., 2014, vol. 16, no. 2, pp. 824–835.

    Article  CAS  Google Scholar 

  22. Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., Yu, W., and Xu, J., Energy Environ. Sci., 2013, vol. 6, no. 3, pp. 994–1007.

    Article  CAS  Google Scholar 

  23. Ma, R., Hao, W., Ma, X., Tian, Y., and Li, Y., Angew. Chem., Int. Ed., 2014, vol. 53, no. 28, pp. 7310–7315.

    Article  CAS  Google Scholar 

  24. Ermakova, M.A. and Ermakov, D.Yu., Appl. Catal., A, 2003, vol. 245, no. 2, pp. 277–288.

    Article  CAS  Google Scholar 

  25. Bykova, M.V., Ermakov, D.Yu., Khromova, S.A., Smirnov, A.A., Lebedev, M.Yu., and Yakovlev, V.A., Catal. Today, 2014, vols. 220–222, pp. 21–31.

    Google Scholar 

  26. Quesada-Medina, J., López-Cremades, F.J., and Olivares-Carrillo, P., Bioresour. Technol., 2010, vol. 101, no. 21, pp. 8252–8260.

    Article  CAS  Google Scholar 

  27. Ralph, J. and Hatfield, R.D., J. Agric. Food Chem., 1991, vol. 3, no. 8, pp. 1426–1437.

    Article  Google Scholar 

  28. Kjällstrand, J., Ramnäs, O., and Petersson, G., J. Chromatogr. A, 1998, vol. 824, no. 2, pp. 205–210.

    Article  Google Scholar 

  29. Yoshikawa, T., Shinohara, S., Yagi, T., Ryumon, N., Nakasaka, Y., Tago, T., and Masuda, T., Appl. Catal., B, 2014, vol. 146, pp. 289–297.

    Article  CAS  Google Scholar 

  30. Cheng, S., Wilks, C., Yuan, Z., Leitch, M., and Xu, C., Polym. Degrad. Stab., 2012, vol. 97, no. 6, pp. 839–848.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Sharypov.

Additional information

Original Russian Text © V.I. Sharypov, B.N. Kusnetsov, V.A. Yakovlev, N.G. Beregovtsova, S.V. Baryshnikov, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharypov, V.I., Kusnetsov, B.N., Yakovlev, V.A. et al. Studying the thermal conversion of acetone lignin in supercritical butanol in the presence of NiCuMo/SiO2 catalysts. Catal. Ind. 9, 170–179 (2017). https://doi.org/10.1134/S2070050417020088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050417020088

Keywords

Navigation