Skip to main content
Log in

Ruthenium promoted cobalt–alumina catalysts for the synthesis of high-molecular-weight solid hydrocarbons from CO and hydrogen

  • Domestic Catalysts
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The effect of the ruthenium promotion of Fischer–Tropsch (FT) cobalt–alumina catalysts on the temperature of catalyst activation reduction and catalytic properties in the FT process is studied. The addition of 0.2–1 wt % of ruthenium reduces the temperature of reduction activation from 500 to 330–350°C while preserving the catalytic activity and selectivity toward C5+ products in FT synthesis. FT ruthenium-promoted Co–Al catalysts are more selective toward higher hydrocarbons; the experimental value of parameter αASF of the distribution of paraffinic products for ruthenium-promoted catalysts is 0.93–0.94, allowing us to estimate the selectivity toward C20+ synthetic waxes to be 48 wt %, and the selectivity toward C35+ waxes to be 23 wt %. Ruthenium-promoted catalysts also exhibit high selectivity toward olefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lisitsyn, A.S., Golovin, A.V., Kuznetsov, V.L., and Yermakov, Yu.I., C1 Mol. Chem., 1984, no. 1, pp. 115–135.

    CAS  Google Scholar 

  2. Khassin, A.A., Yur’eva, T.M., and Parmon, V.N., Dokl. Phys. Chem., 1999, vol. 367, nos. 1–3, pp. 213–216.

    Google Scholar 

  3. Satterfield, C.N., Huff, G.A., Stenger, H.G., Carter, J.L., and Madon, R.J., Ind. Eng. Chem. Fundam., 1985, vol. 24, no. 3, pp. 450–454.

    Article  CAS  Google Scholar 

  4. Tavasoli, A., Pour, A.N., and Ahangari, M.G., J. Nat. Gas Chem., 2010, vol. 19, no. 6, pp. 653–659.

    Article  CAS  Google Scholar 

  5. Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Bakun, V.G., and Zemlyakov, N.D., Catal. Ind., 2014, vol. 6, no. 4, pp. 292–297.

    Article  Google Scholar 

  6. Ermolaev, I.S., Ermolaev, V.S., and Mordkovich, V.Z., Theor. Found. Chem. Eng., 2013, vol. 47, no. 2, pp. 153–158.

    Article  CAS  Google Scholar 

  7. Sineva, L.V., Mordkovich, V.Z., Ermolaev, V.S., Ermolaev, I.S., Mitberg, E.B., and Solomonik, I.G., Katal. Prom-sti, 2012, no. 6, pp. 13–22.

    Google Scholar 

  8. Lamprecht, D., Nel, R., and Leckel, D., Energy Fuels, 2010, vol. 24, no. 3, pp. 1479–1486.

    Article  CAS  Google Scholar 

  9. Simentsova, I.I., Khassin, A.A., Minyukova, T.P., Davydova, L.P., Shmakov, A.N., Bulavchenko, O.A., Cherepanova, S.V., Kustova, G.N., and Yurieva, T.M. Kinet. Catal., 2012, vol. 53, no. 4, pp. 497–503.

  10. Khassin, A.A., Simentsova, I.I., Shmakov, A.N., Shtertser, N.V., Bulavchenko, O.A., and Cherepanova, S.V., Appl. Catal., A, 2016, vol. 514, pp. 114–125.

    Article  CAS  Google Scholar 

  11. RF Patent 2538088, Byull. Izobret., 2015, no. 1.

  12. Simentsova, I.I., Khasin, A.A., Shtertser, N.V., Davydova, L.P., Minyukova, T.P., and Yur’eva, T.M., Katal. Prom-sti, 2016, no. 2, pp. 17–22.

    Article  Google Scholar 

  13. Khassin, A.A., Anufrienko, V.F., Ikorskii, V.N., Plyasova, L.M., Kustova, G.N., Larina, T.V., Molina, I.Yu., and Parmon, V.N., Phys. Chem. Chem. Phys., 2002, vol. 4, no. 17, pp. 4236–4243.

    Article  CAS  Google Scholar 

  14. Tsubaki, N., Sun, S., and Fujimoto, K., J. Catal., 2001, vol. 199, no. 2, pp. 236–246.

    Article  CAS  Google Scholar 

  15. Ma, W., Jacobs, G., Keogh, R.A., Bukur, D.B., and Davis, B.H., Appl. Catal., A, 2012, vols. 437–438, pp. 1–9.

    Google Scholar 

  16. Jacobs, G., Das, T.K., Zhang, Y., Li, J., Racoillet, G., and Davis, B.H., Appl. Catal., A, 2002, vol. 233, nos. 1–2, pp. 263–281.

    Article  CAS  Google Scholar 

  17. Song, S.-H., Lee, S.-B., Bae, J.W., Sai Prasad, P.S., and Jun, K.-W., Catal. Commun., 2008, vol. 9, no. 13, pp. 2282–2286.

    Article  CAS  Google Scholar 

  18. Kogelbauer, A., Goodwin, J.G., and Oukaci, R., J. Catal., 1996, vol. 160, no. 1, pp. 125–133.

    Article  CAS  Google Scholar 

  19. Park, J.-Y., Lee, Y.-J., Karandikar, P.R., Jun, K.-W., Bae, J.W., and Ha, K.-S., J. Mol. Catal. A: Chem., 2011, vol. 344, nos. 1–2, pp. 153–160.

    Article  CAS  Google Scholar 

  20. Parnian, M.J., Najafabadi, A.T., Mortazavi, Y., Khodadadi, A.A., and Nazzari, I., Appl. Surf. Sci., 2014, vol. 313, pp. 183–195.

    Article  CAS  Google Scholar 

  21. Cook, K.M., Poudyal, S., Miller, J., Bartholomew, C.H., and Hecker, W.C., Appl. Catal., A, 2012, vol. 449, pp. 69–80.

    Article  CAS  Google Scholar 

  22. Hermans, L.A.M. and Geus, J.W., Stud. Surf. Sci. Catal., 1979, vol. 3, pp. 113–130.

    Article  CAS  Google Scholar 

  23. Bezemer, G.L., Radstake, P.B., Koot, V., van Dillen, A.J., Geus, J.W., and De Jong, K.P., J. Catal., 2006, vol. 237, no. 2, pp. 291–302.

    Article  CAS  Google Scholar 

  24. Eschemann, T.O., Bitter, J.H., and De Jong, K.P., Catal. Today, 2014, vol. 228, pp. 89–95.

    Article  CAS  Google Scholar 

  25. Emel'yanov, V.A., Formation and conversion of ruthenium nitrozo complexes in chloride, nitrite, nitrate, and ammonia solutions, Doctoral (Chem.) Dissertation, Novosibirsk Nikolaev Inst. Inorg. Chem., 2013.

    Google Scholar 

  26. Iglesia, E., Reyes, S.C., and Madon, R.J., J. Catal., 1991, vol. 129, no. 1, pp. 238–256.

    Article  CAS  Google Scholar 

  27. Iglesia, E., Appl. Catal., A, 1997, vol. 161, nos. 1–2, pp. 59–78.

    Article  CAS  Google Scholar 

  28. Zhan, X.D. and Davis, B.H., Pet. Sci. Technol., 2000, vol. 18, nos. 9–10, pp. 1037–1053.

    Article  CAS  Google Scholar 

  29. Derevich, I.V., Ermolaev, V.S., Zol’nikova, N.V., and Mordkovich, V.Z., Theor. Found. Chem. Eng., 2013, vol. 47, no. 3, pp. 191–200.

    Article  CAS  Google Scholar 

  30. Chickos, J.S. and Hanshaw, W., J. Chem. Eng. Data, 2004, vol. 49, no. 1, pp. 77–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kungurova.

Additional information

Original Russian Text © O.A. Kungurova, N.V. Shtertser, G.K. Chermashentseva, I.I. Simentsova, A.A. Khassin, 2016, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kungurova, O.A., Shtertser, N.V., Chermashentseva, G.K. et al. Ruthenium promoted cobalt–alumina catalysts for the synthesis of high-molecular-weight solid hydrocarbons from CO and hydrogen. Catal. Ind. 9, 23–30 (2017). https://doi.org/10.1134/S2070050417010081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050417010081

Keywords

Navigation