Skip to main content

Supercritical fluid CO2-extraction regeneration of nickel–molybdenum catalyst for hydrotreatment


Results from studying the supercritical fluid СО2-extraction regeneration of DN-3531 industrial nickel–molybdenum hydrotreatment catalyst in the temperature range of 323.15–383.15 K, at pressures of up to 30 MPa, and with modification of the basic extragent with such polar compounds as chloroform, methanol, ethanol, acetone, and dimethylsulfoxide (DMSO), are presented. The order of modifiers corresponds to the increase in the solubilizing ability of modified supercritical carbon dioxide (SC-СО2) with respect to catalyst- deactivating deposits. With DMSO as the most efficient modifier, however, not only are deactivating compounds removed but nickel and molybdenum as well, considerably reducing the final activity of a regenerated sample. During extraction regeneration, the content of coke in the catalyst is reduced by two-thirds, while the specific surface area and the pore volume grow. The activity of the deactivated catalyst in dibenzothiophene hydrodesulfurization (HDS) and naphthalene hydrogenation grows by several hundred per cent after one-time SC-CO2 treatment and is 2.5 times higher than for a sample regenerated using the traditional oxidative method.

This is a preview of subscription content, access via your institution.


  1. Kurganov, V.M., Kushner, B.E., and Agafonov, A.V., Parovozdushnaya regeneratsiya katalizatorov gidroochistki (Steam-Air Regeneration of Hydrotreatment Catalysts), Moscow TsNIITEneftekhim, 1973.

    Google Scholar 

  2. Reid, R.C., Supercritical Fluid Extraction, a Perspective, Madison, UW University of Wisconsin, 1981.

    Google Scholar 

  3. Vradman, L., Herskowitz, M., Korin, E., and Wisniak, J., Ind. Eng. Chem. Res., 2001, vol. 40, no. 7, pp. 1589–1590.

    Article  CAS  Google Scholar 

  4. Osada, M., Sato, O., Arai, K., and Shirai, M., Abstracts of Papers, Proc. 10th European Meeting on Supercritical Fluids, Strasburg /Colmar, 2005.

  5. Bogdan, V.I., Koklin, A.E., and Kazanskii, V.B., Sverkhkrit. Flyuidy. Teor. Prakt., 2006, vol. 1, no. 2, pp. 5–12.

    Google Scholar 

  6. Shiriyazdanov, R.R., Russ. J. Phys. Chem. B, 2011, vol. 5, no. 7, pp. 1080–1083.

    Article  CAS  Google Scholar 

  7. Gaydamaka, S.N., Timofeev, V.V., Lemenovskii, D.A., Kardashev, S.V., Parenago, O.O., Bagratashvili, V.N., Sergienko, S.A., Brusova, G.P., and Lunin, V.V., Catal. Ind., 2013, vol. 5, no. 3, pp. 216–222.

    Article  Google Scholar 

  8. Song, C., Catal. Today, 2003, vol. 86, nos. 1–4, pp. 211–263.

    Article  CAS  Google Scholar 

  9. Sax’s Dangerous Properties of Industrial Materials, Lewis, R.J., Ed., New York Wiley, 2004.

  10. Chernyshev, A.K., Gumerov, F.M., Tsvetinskii, G.N., Yarullin, R.S., Ivanov, S.V., Levin, B.V., Shafran, M.I., Zhilin, I.F., Beskov, A.G., and Chernyshev, K.A., Dioksid ugleroda. Svoistva, ulavlivanie (poluchenie), primenenie (Carbon Dioxide Properties, Capture (Production), Application), Moscow: Galleya-print, 2013.

    Google Scholar 

  11. Gumerov, F.M., Sagdeev, A.A., Bilalov, T.R., et al., Katalizatory: regeneratsiya s ispol’zovaniem sverkhkriticheskogo flyuidnogo CO2 (Catalysts: Supercritical Fluid CO2 Regeneration), Kazan Brig, 2015.

    Google Scholar 

  12. Bilalov, T.R. and Gumerov, F.M., Protsessy proizvodstva i regeneratsii katalizatorov. Termodinamicheskie osnovy protsessov proizvodstva i regeneratsii palladievykh katalizatorov s ispol’zovaniem sverkhkriticheskogo dioksida ugleroda (Catalyst Production and Regeneration Processes. Thermodynamic Foundations of Palladium Catalyst Production and Regeneration Processes with the Use of Supercritical Carbon Dioxide), Saarbrucken, Germany LAP LAMBERT Academic Publishing, 2011.

    Google Scholar 

  13. Gumerov, F.M., Le Neindre, B., Bilalov, T.R., and Sagdeev, A.A., Regeneration of Spent Catalyst and Impregnation of Catalyst by Supercritical Fluid, New York Nova Publisher, 2016.

    Google Scholar 

  14. Johnston, K.P., ACS Symp. Ser., 1989, vol. 406, pp. 1–12.

    Article  CAS  Google Scholar 

  15. Pichugin, A.A. and Tarasov, V.V., Russ. Chem. Rev., 1991, vol. 60, no. 11, pp. 1249–1254.

    Article  Google Scholar 

  16. CRI Catalyst Company Production Catalog.

  17. Zakharov, A.A., Ameer Abed Jaddoa, Bilalov, T.R., and Gumerov, F.M., Int. J. Anal. Mass Spectrom. Chromatogr., 2014, vol. 2, no. 4, pp. 113–122.

    Article  Google Scholar 

  18. Nikulshin, P.A., Mozhaev, A.V., Maslakov, K.I., Pimerzin, A.A., and Kogan, V.M., Appl. Catal., B, 2014, vols. 158–159, pp. 161–174.

    Article  Google Scholar 

  19. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Klunyants, I.L. et al. Eds., Moscow: Sovetskaya entsiklopediya, 1988.

  20. Boreskov, G.K., Kataliz (Catalysis), Novosibirsk Nauka, 1971.

    Google Scholar 

  21. Kogan, V.M., Nikul’shin, P.A., Dorokhov, V.S., Permyakov, E.A., Mozhaev, A.V., Ishutenko, D.I., Eliseev, O.L., Rozhdestvenskaya, N.N., and Lapidus, A.L., Russ. Chem. Bull., 2014, vol. 63, no. 2, pp. 332–345.

    Article  CAS  Google Scholar 

  22. Nikulshin, P.A., Mozhaev, A.V., Pimerzin, A.A., Konovalov, V.V., and Pimerzin, A.A., Fuel, 2012, vol. 100, pp. 24–33.

    Article  CAS  Google Scholar 

  23. Scharfe, R.R., Sastri, V.S., Chakrabarti, C.L., and Langfor, C.H., Can. J. Chem., 1973, vol. 51, no. 1, pp. 67–69.

    Article  CAS  Google Scholar 

  24. Irisova, K.N., Talisman, E.L., and Smirnov, V.K., Chem. Technol. Fuels Oils, 2003, vol. 39, no. 1, pp. 20–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. R. Bilalov.

Additional information

Original Russian Text © Ameer Abed Jaddoa, T.R. Bilalov, F.M. Gumerov, F.R. Gabitov, Z.I. Zaripov, R.S. Yarullin, A.A. Pimerzin, P.A. Nikul’shin, 2016, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaddoa, A.A., Bilalov, T.R., Gumerov, F.M. et al. Supercritical fluid CO2-extraction regeneration of nickel–molybdenum catalyst for hydrotreatment. Catal. Ind. 9, 31–38 (2017).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: