Abstract
Results from studying the supercritical fluid СО2-extraction regeneration of DN-3531 industrial nickel–molybdenum hydrotreatment catalyst in the temperature range of 323.15–383.15 K, at pressures of up to 30 MPa, and with modification of the basic extragent with such polar compounds as chloroform, methanol, ethanol, acetone, and dimethylsulfoxide (DMSO), are presented. The order of modifiers corresponds to the increase in the solubilizing ability of modified supercritical carbon dioxide (SC-СО2) with respect to catalyst- deactivating deposits. With DMSO as the most efficient modifier, however, not only are deactivating compounds removed but nickel and molybdenum as well, considerably reducing the final activity of a regenerated sample. During extraction regeneration, the content of coke in the catalyst is reduced by two-thirds, while the specific surface area and the pore volume grow. The activity of the deactivated catalyst in dibenzothiophene hydrodesulfurization (HDS) and naphthalene hydrogenation grows by several hundred per cent after one-time SC-CO2 treatment and is 2.5 times higher than for a sample regenerated using the traditional oxidative method.
This is a preview of subscription content, access via your institution.
References
Kurganov, V.M., Kushner, B.E., and Agafonov, A.V., Parovozdushnaya regeneratsiya katalizatorov gidroochistki (Steam-Air Regeneration of Hydrotreatment Catalysts), Moscow TsNIITEneftekhim, 1973.
Reid, R.C., Supercritical Fluid Extraction, a Perspective, Madison, UW University of Wisconsin, 1981.
Vradman, L., Herskowitz, M., Korin, E., and Wisniak, J., Ind. Eng. Chem. Res., 2001, vol. 40, no. 7, pp. 1589–1590.
Osada, M., Sato, O., Arai, K., and Shirai, M., Abstracts of Papers, Proc. 10th European Meeting on Supercritical Fluids, Strasburg /Colmar, 2005.
Bogdan, V.I., Koklin, A.E., and Kazanskii, V.B., Sverkhkrit. Flyuidy. Teor. Prakt., 2006, vol. 1, no. 2, pp. 5–12.
Shiriyazdanov, R.R., Russ. J. Phys. Chem. B, 2011, vol. 5, no. 7, pp. 1080–1083.
Gaydamaka, S.N., Timofeev, V.V., Lemenovskii, D.A., Kardashev, S.V., Parenago, O.O., Bagratashvili, V.N., Sergienko, S.A., Brusova, G.P., and Lunin, V.V., Catal. Ind., 2013, vol. 5, no. 3, pp. 216–222.
Song, C., Catal. Today, 2003, vol. 86, nos. 1–4, pp. 211–263.
Sax’s Dangerous Properties of Industrial Materials, Lewis, R.J., Ed., New York Wiley, 2004.
Chernyshev, A.K., Gumerov, F.M., Tsvetinskii, G.N., Yarullin, R.S., Ivanov, S.V., Levin, B.V., Shafran, M.I., Zhilin, I.F., Beskov, A.G., and Chernyshev, K.A., Dioksid ugleroda. Svoistva, ulavlivanie (poluchenie), primenenie (Carbon Dioxide Properties, Capture (Production), Application), Moscow: Galleya-print, 2013.
Gumerov, F.M., Sagdeev, A.A., Bilalov, T.R., et al., Katalizatory: regeneratsiya s ispol’zovaniem sverkhkriticheskogo flyuidnogo CO2 (Catalysts: Supercritical Fluid CO2 Regeneration), Kazan Brig, 2015.
Bilalov, T.R. and Gumerov, F.M., Protsessy proizvodstva i regeneratsii katalizatorov. Termodinamicheskie osnovy protsessov proizvodstva i regeneratsii palladievykh katalizatorov s ispol’zovaniem sverkhkriticheskogo dioksida ugleroda (Catalyst Production and Regeneration Processes. Thermodynamic Foundations of Palladium Catalyst Production and Regeneration Processes with the Use of Supercritical Carbon Dioxide), Saarbrucken, Germany LAP LAMBERT Academic Publishing, 2011.
Gumerov, F.M., Le Neindre, B., Bilalov, T.R., and Sagdeev, A.A., Regeneration of Spent Catalyst and Impregnation of Catalyst by Supercritical Fluid, New York Nova Publisher, 2016.
Johnston, K.P., ACS Symp. Ser., 1989, vol. 406, pp. 1–12.
Pichugin, A.A. and Tarasov, V.V., Russ. Chem. Rev., 1991, vol. 60, no. 11, pp. 1249–1254.
CRI Catalyst Company Production Catalog.
Zakharov, A.A., Ameer Abed Jaddoa, Bilalov, T.R., and Gumerov, F.M., Int. J. Anal. Mass Spectrom. Chromatogr., 2014, vol. 2, no. 4, pp. 113–122.
Nikulshin, P.A., Mozhaev, A.V., Maslakov, K.I., Pimerzin, A.A., and Kogan, V.M., Appl. Catal., B, 2014, vols. 158–159, pp. 161–174.
Khimicheskaya entsiklopediya (Chemical Encyclopedia), Klunyants, I.L. et al. Eds., Moscow: Sovetskaya entsiklopediya, 1988.
Boreskov, G.K., Kataliz (Catalysis), Novosibirsk Nauka, 1971.
Kogan, V.M., Nikul’shin, P.A., Dorokhov, V.S., Permyakov, E.A., Mozhaev, A.V., Ishutenko, D.I., Eliseev, O.L., Rozhdestvenskaya, N.N., and Lapidus, A.L., Russ. Chem. Bull., 2014, vol. 63, no. 2, pp. 332–345.
Nikulshin, P.A., Mozhaev, A.V., Pimerzin, A.A., Konovalov, V.V., and Pimerzin, A.A., Fuel, 2012, vol. 100, pp. 24–33.
Scharfe, R.R., Sastri, V.S., Chakrabarti, C.L., and Langfor, C.H., Can. J. Chem., 1973, vol. 51, no. 1, pp. 67–69.
Irisova, K.N., Talisman, E.L., and Smirnov, V.K., Chem. Technol. Fuels Oils, 2003, vol. 39, no. 1, pp. 20–25.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © Ameer Abed Jaddoa, T.R. Bilalov, F.M. Gumerov, F.R. Gabitov, Z.I. Zaripov, R.S. Yarullin, A.A. Pimerzin, P.A. Nikul’shin, 2016, published in Kataliz v Promyshlennosti.
Rights and permissions
About this article
Cite this article
Jaddoa, A.A., Bilalov, T.R., Gumerov, F.M. et al. Supercritical fluid CO2-extraction regeneration of nickel–molybdenum catalyst for hydrotreatment. Catal. Ind. 9, 31–38 (2017). https://doi.org/10.1134/S2070050417010020
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2070050417010020