Skip to main content
Log in

Mechanically activated enzymatic hydrolysis of yeast biomass

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Experimental data obtained in studying processes that occur during the mechanoenzymatic hydrolysis of cell wall polymers of Saccharomyces cerevisiae yeast are presented. Special emphasis is placed on studying the reactivity of polymers contained in the supramolecular structure of cell walls, and on scaling the technology using pilot and industrial equipment. It is shown that mechanical treatment of yeast biomass allows us to alter the supramolecular structure of cell wall polymers and increase their reactivity in the enzymatic hydrolysis. Mechanical treatment disintegrates yeast cells and changes the supramolecular structure of polymers in their cell walls; the structural layers of a cell wall become disordered and diffused. A phenomenological model of mechanically activated enzymatic hydrolysis is proposed; the model is based on an autolocalization mechanism of the process. The domestic commercially available enzyme preparation CelloLux 2000 (OOO PA Sibbiopharm, Berdsk, Novosibirsk oblast) is used in this work. It is shown that changes in the supramolecular structure of yeast cell wall polymers occur during mechanically activated enzymatic hydrolysis. The yields of mannanoligosaccharides (1.1%) and mannanoproteins (2.7%) in the main extract are determined. Using pilot and industrial equipment at OOO PA Sibbiopharm, the technology is scaled and the production of a new mannanoligosaccharide product for animal husbandry is established. The pilot batch of the final product is effective against salmonellosis and is shown to increase the weight gain of experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liepins, J., Kovačova, E., Shvirksts, K., Grube, M., Rapoport, A., and Kogan, G., J. Biotechnol., 2015, vol. 206, pp. 12–16.

  2. US Patent 6060089, 2000.

  3. Tao, M., Tu, Y., Zhang, N.-F., Guo, J.-P., Deng, K.-D., Zhou, Y., Yun, Q., and Diao, Q.-Y., J. Integr. Agric., 2015, vol. 14, no. 4, pp. 749–757.

    Article  Google Scholar 

  4. Babayan, T.L. and Latov, V.K., Biotechnol. Russ., 1992, vol. 2, pp. 23–26.

    Google Scholar 

  5. Haldar, S., Ghosh, T.K., and Bedford, M.R., Anim. Feed Sci. Technol., 2011, vol. 168, nos. 1–2, pp. 61–71.

    Article  CAS  Google Scholar 

  6. Phaneuf, L.R., Lillie, B.N., Hayes, M.A., and Turner, P.V., Vet. Immunol. Immunopathol., 2007, vol. 118, nos. 1–2, pp. 129–133.

    Article  CAS  Google Scholar 

  7. Van Emmerik, L.C., Kuijper, E.J., Fijen, C.A., Dankert, J., and Thiel, S., Clin. Exp. Immunol., 1994, vol. 97, no. 3, pp. 411–416.

    Article  Google Scholar 

  8. Oda, Y., Ichida, S., Aonuma, S., and Shibahara, T., Chem. Pharm. Bull., 1988, vol. 36, no. 7, pp. 2695–2698.

    Article  CAS  Google Scholar 

  9. Middelberg, A.P.J., Biotechnol. Adv., 1995, vol. 13, no. 3, pp. 491–551.

    Article  CAS  Google Scholar 

  10. Bychkov, A.L., Buchtoyarov, V.A., and Lomovsky, O.I., Cellul. Chem. Technol., 2014, vol. 48, nos. 5–6, pp. 545–551.

    CAS  Google Scholar 

  11. Golyazimova, O.V., Politov, A.A., and Lomovskii, O.I., Khim. Rastit. Syr’ya, 2009, vol. 2, pp. 53–57.

    Google Scholar 

  12. He, X., Miao, Y., Jiang, X., Xu, Z., and Ouyang, P., Appl. Biochem. Biotechnol., 2010, vol. 160, no. 8, pp. 2449–2457.

    Article  CAS  Google Scholar 

  13. Borzani, W. and Vairo, M.L.R., J. Bacteriol., 1958, vol. 76, no. 3, pp. 251–255.

    CAS  Google Scholar 

  14. US Patent 4313934, 1982.

  15. Heim, A., Kamionowska, U., and Solecki, M., J. Food Eng., 2007, vol. 83, no. 1, pp. 121–128.

    Article  Google Scholar 

  16. Bukhtoyarov, V.A., Bychkov, A.L., and Lomovskii, O.I., Russ. Chem. Bull., 2015, vol. 64, no. 4, pp. 948–951.

    Article  CAS  Google Scholar 

  17. Nielson, A.J. and Griffith, W.P., J. Histochem. Cytochem., 1979, vol. 27, no. 5, pp. 997–999.

    Article  CAS  Google Scholar 

  18. Klaus, T., Joerger, R., Olsson, E., and Granqvist, C.-G., Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, no. 24, pp. 13611–13614.

    Article  CAS  Google Scholar 

  19. Shin, Y., Bae, I.-T., Arey, B.W., and Exarhos, G.J., J. Phys. Chem. C, 2008, vol. 112, no. 13, pp. 4844–4848.

    Article  CAS  Google Scholar 

  20. Koptev, V.Yu., Shkil’, N.A., Titova, M.A., Onishchenko, I.S., Balybina, N.Yu., and Bychkov, A.L., Sib. Vestn. S-kh. Nauki, 2014, no. 2, pp. 47–52.

    Google Scholar 

  21. Koptev, V.Yu., Shkil’, N.A., Leonova, M.A., Onishchenko, I.S., Balybina, N.Yu., and Bychkov, A.L., Dostizh. Nauki Tekh. APK, 2015, vol. 29, no. 1, pp. 46–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Bychkov.

Additional information

Original Russian Text © A.L. Bychkov, E.I. Ryabchikova, K.G. Korolev, T.F. Lomovskaya, O.I. Lomovskii, 2016, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, A.L., Ryabchikova, E.I., Korolev, K.G. et al. Mechanically activated enzymatic hydrolysis of yeast biomass. Catal. Ind. 8, 354–360 (2016). https://doi.org/10.1134/S2070050416040024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050416040024

Keywords

Navigation