Skip to main content
Log in

New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 1: Methods for biomass activation

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Literature published mainly between 1995 and 2015 in the field of investigations aimed at finding promising new catalysts for the industrial processing of polysaccharide components of lignocellulose biomass, for new methods to achieve these processes, and for new ways of transforming polysaccharides into valuable chemicals and fuel is reviewed. In the first section, modern methods for activating lignocellulose biomass in order to separate main components and/or treat polysaccharide feedstock (cellulose, hemicelluloses) for further processing are considered. The second will deal with catalytic acidic transformations of these components into monosaccharides and furans. The third will focus on with the main focus on the production of 5-hydroxymethylfurfurol the application of biotechnological enzymatic methods for producing valuable chemicals such as ethanol, isobutanol, lactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klass, D.L., in Encyclopedia of Energy, Cleveland, C.J., Ed., San Diego: Elsevier, 1998, vol. 1, pp. 193–212.

    Google Scholar 

  2. Kuznetsov, B.N., Soros. Obraz. Zh., 1996, no. 12, pp. 47–55.

    Google Scholar 

  3. Mäki-Arvela, P., Holmbom, B., Salmi, T., and Murzin, D. Yu., Catal. Rev., 2007, vol. 49, no. 3, pp. 197–340.

    Article  CAS  Google Scholar 

  4. Besson, M., Gallezot, P., and Pinel, C., Chem. Rev., 2014, vol. 114, no. 3, pp. 1827–1870.

    Article  CAS  Google Scholar 

  5. Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., and Tarabanko, V.E., Chem. Sustainable Dev., 2005, vol. 13, no. 4, pp. 531–539.

    CAS  Google Scholar 

  6. Murzin, D.Yu. and Simakova, I.L., Catal. Ind., 2011, vol. 3, no. 3, pp. 218–249.

    Article  Google Scholar 

  7. Novyi spravochnik khimika i tekhnologa (New Chemist and Process Engineer’s Handbook), part 2: Syr’e i produkty promyshlennosti organicheskikh i neorganicheskikh veshchestv (Feedstocks and Products in Industry of Organic and Inorganic Compounds), Pokonova, Yu.V. and Starkhov, B.I., Eds., St. Petersburg: NPO Professional, 2007.

  8. Gallezot, P., Chem. Soc. Rev., 2012, vol. 41, no. 4, pp. 1538–1558.

    Article  CAS  Google Scholar 

  9. Serrano-Ruiz, J.C., Luque, R., and Sepúlveda-Escribano, A., Chem. Soc. Rev., 2011, vol. 40, no. 11, pp. 5266–5281.

    Article  CAS  Google Scholar 

  10. Van Putten, R.-J., van der Waal, J.C., de Jong, E., Rasrendra, C.B., Heeres, H.J., and de Vries, J.G., Chem. Rev., 2013, vol. 113, no. 3, pp. 1499–1597.

    Article  CAS  Google Scholar 

  11. Panoutsou, C., Bauen, A., and Duffield, J., Biofuels, Bioprod. Biorefin., 2013, vol. 7, no. 6, pp. 685–701.

    Article  CAS  Google Scholar 

  12. Mäki-Arvela, P., Simakova, I.L., Salmi, T., and Murzin, D.Yu., Chem. Rev., 2014, vol. 114, no. 3, pp. 1909–1971.

    Article  CAS  Google Scholar 

  13. Azarov, V.I., Burov, A.V., and Obolenskaya, A.V., Khimiya drevesiny i sinteticheskikh polimerov: Uchebnik dlya vuzov (Chemistry of Wood and Synthetic Polymers: Textbook for Universities), St. Petersburg: SPbLTA, 1999.

    Google Scholar 

  14. Fengel, D., Vegener, G., and Leonovich, A.A., Drevesina. Khimiya, ul’trastruktura, reaktsii (Wood: Chemistry, Ultrastructure, Reactions), Moscow: Lesnaya Promyshlennost’, 1988.

    Google Scholar 

  15. Rinaldi, R. and Schüth, F., ChemSusChem, 2009, vol. 2, no. 12, pp. 1096–1107.

    Article  CAS  Google Scholar 

  16. Murzin, D. and Salmi, T., Catal. Lett., 2012, vol. 142, no. 6, pp. 676–689.

    Article  CAS  Google Scholar 

  17. Perez, S. and Mazeau, K., in Polysaccharides: Structural Diversity and Functional Versatility, Dimitriu, S., Ed., New York: Marcel Dekker, 2005, pp. 41–64.

  18. Saddler, J.N., Ramos, L.P., Breuil, C., in Bioconversion of Forest and Agricultural Plant Residues, Saddler, J.N., Ed., Wallingford, UK: C.A.B. International, 1993, pp. 73–91.

  19. Sinitsyn, A.P. and Klesov, A.A., Prikl. Biokhim. Mikrobiol., 1981, vol. 17, no. 5, pp. 682–694.

    CAS  Google Scholar 

  20. Singh, R., Shukla, A., Tiwari, S., and Srivastava, M., Renewable Sustainable Energy Rev., 2014, vol. 32, pp. 713–728.

    Article  CAS  Google Scholar 

  21. Zheng, Y., Zhao, J., Xu, F., and Li, Y., Prog. Energy Combust. Sci., 2014, vol. 42, pp. 35–53.

    Article  Google Scholar 

  22. Saha, B.C., Iten, L.B., Cotta, M.A., and Wu, Y.V., Process Biochem., 2005, vol. 40, no. 12, pp. 3693–3700.

    Article  CAS  Google Scholar 

  23. Xiao, W. and Clarkson, W., Biodegradation, 1997, vol. 8, no. 1, pp. 61–66.

    Article  CAS  Google Scholar 

  24. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., and Ladisch, M., Bioresour. Technol., 2005, vol. 96, no. 6, pp. 673–686.

    Article  CAS  Google Scholar 

  25. Balat, M., Energy Convers. Manage., 2011, vol. 52, no. 2, pp. 858–875.

    Article  CAS  Google Scholar 

  26. Kim, J.S., Lee, Y.Y., and Kim, T.H., Bioresour. Technol., 2016, vol. 199, pp. 42–48.

    Article  CAS  Google Scholar 

  27. Kim, T.H., Kim, J.S., Sunwoo, C., and Lee, Y.Y., Bioresour. Technol., 2003, vol. 90, no. 1, pp. 39–47.

    Article  CAS  Google Scholar 

  28. Balan, V., Bals, B., Chundawat, S. P. S., Marshall, D. and Dale, B. E., in Biofuels: Methods and Protocols, vol. 581: Methods in Molecular Biology, Mielenz, J.R., Ed., New York: Humana Press, 2009, pp. 61–77.

  29. Kim, T.H., Gupta, R., and Lee, Y.Y., in Biofuels: Methods and Protocols, vol. 581: Methods in Molecular Biology, Mielenz, J.R., Ed., New York: Humana Press, 2009, pp. 79–91.

  30. Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., and Mikkola, J.P., Ind. Crops Prod., 2010, vol. 32, no. 3, pp. 175–201.

    Article  CAS  Google Scholar 

  31. Kilpelainen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S., and Argyropoulos, D.S., J. Agric. Food Chem., 2007, vol. 55, no. 22, pp. 9142–9148.

    Article  CAS  Google Scholar 

  32. Yeh, A.-I., Huang, Y.-C., and Chen, S.H., Carbohydr. Polym., 2010, vol. 79, no. 1, pp. 192–199.

    Article  CAS  Google Scholar 

  33. Ishiguro, M. and Endo, T., Bioresour. Technol., 2014, vol. 153, pp. 322–326.

    Article  CAS  Google Scholar 

  34. Pinjari, D.V. and Pandit, A.B., Ultrason. Sonochem., 2010, vol. 17, no. 5, pp. 845–852.

    Article  CAS  Google Scholar 

  35. Dai, L., Wang, L.-Y., Yuan, T.-Q., and He, J., Polym. Degrad. Stab., 2014, vol. 99, pp. 233–239.

    Article  CAS  Google Scholar 

  36. Zhou, S., Liu, L., Wang, B., Xu, F., and Sun, R., Process Biochem., 2012, vol. 47, no. 12, pp. 1799–1806.

    Article  CAS  Google Scholar 

  37. Humphrey, A.E., Adv. Chem. Ser., vol. 181: Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, Brown, R. D., Jurasek, L., Eds. Washington, DC: American Chemical Society, 1979, pp. 25–53.

  38. Yao, W. and Nokes, S.E., Biomass Bioenergy, 2014, vol. 62, pp. 100–107.

    Article  CAS  Google Scholar 

  39. Scott, G.M.; Akhtar, M.; Swaney, R.E.; and Houtman, C.J, in Biotechnology in the Pulp and Paper Industry, vol. 21: 8th ICBPPI Meeting. Progress in Biotechnology, Viikari, L. and Lantto, R., Eds., Amsterdam: Elsevier, 2002, pp. 61–71.

  40. Moilanen, U., Kellock, M., Galkin, S., and Viikari, L., Enzyme Microb. Technol., 2011, vol. 49, nos. 6–7, pp. 492–498.

    Article  CAS  Google Scholar 

  41. Pretreatment of Biomass. Processes and Technologies, Pandey, A., Negi, S., Binod, P., and Larroche, C., Eds., Amsterdam: Elsevier, 2015.

  42. Singh, R., Krishna, B.B., Kumar, J., and Bhaskar, T., Bioresour. Technol., 2016, vol. 199, pp. 398–407.

    Article  CAS  Google Scholar 

  43. Koverninskii, I.N., Komarov, V.I., Tret’yakov, S.I., Bogdanovich, N.I., Sokolov, O.M., Kutakova, N.A., and Selyanina, L.I., Kompleksnaya khimicheskaya pererabotka drevesiny. Uchebnik dlya vuzov, (Complex Chemical Processing of Wood: Textbook for Universities), Koverninskii, I.N., Ed., Arkhangelsk: Izd. Arkh. Gos. Tech. Univ., 2002.

  44. Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., and Osborne, J., Bioresour. Technol., 2007, vol. 98, no. 16, pp. 3000–3011.

    Article  CAS  Google Scholar 

  45. Saha, B.C., Iten, L.B., Cotta, M.A., and Wu, Y.V., Biotechnol. Prog., 2005, vol. 21, no. 3, pp. 816–822.

    Article  CAS  Google Scholar 

  46. Pere, J., Puolakka, A., Nousiainen, P., and Buchert, J., J. Biotechnol., 2001, vol. 89, nos. 2–3, pp. 247–255.

    Article  CAS  Google Scholar 

  47. Kaar, W.E. and Holtzapple, M.T., Biomass Bioenergy, 2000, vol. 18, no. 3, pp. 189–199.

    Article  CAS  Google Scholar 

  48. Kim, T.H., Kim, J.S., Sunwoo, C., and Lee, Y.Y., Bioresour. Technol., 2003, vol. 90, no. 1, pp. 39–47.

    Article  CAS  Google Scholar 

  49. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., and Ramakrishnan, S., Enzyme Res., 2011. doi 10.4061/2011/787532

    Google Scholar 

  50. Rocha, M.V.P., Rodrigues, T.H.S., de Macedo, G.R., and Gonçalves, L.R.B., Appl. Biochem. Biotechnol., 2009, vol. 155, no. 1, pp. 104–114.

    Article  CAS  Google Scholar 

  51. Fontana, J.D., Ramos, L.P., and Deschamps, F.C., Appl. Biochem. Biotechnol., 1995, vol. 51, no. 1, pp. 105–116.

    Article  Google Scholar 

  52. Amiri, H. and Karimi, K., Ind. Eng. Chem. Res., 2013, vol. 52, no. 33, pp. 11494–11501.

    Article  CAS  Google Scholar 

  53. Kivaisi, A.K. and Eliapenda, S., Renewable Energy, 1994, vol. 5, nos. 5–8, pp. 791–795.

    Article  CAS  Google Scholar 

  54. Monlau, F., Barakat, A., Steyer, J.P., and Carrere, H., Bioresour. Technol., 2012, vol. 120, pp. 241–247.

    Article  CAS  Google Scholar 

  55. Tsuda, M., Aoyama, M., and Cho, N.-S., Bioresour. Technol., 1998, vol. 64, no. 3, pp. 241–243.

    Article  CAS  Google Scholar 

  56. Saha, B.C. and Cotta, M.A., Biotechnol. Prog., 2006, vol. 22, no. 2, pp. 449–453.

    Article  CAS  Google Scholar 

  57. Yang, B., Boussaid, A., Mansfield, S.D., Gregg, D.J., and Saddler, J.N., Biotechnol. Bioeng., 2002, vol. 77, no. 6, pp. 678–684.

    Article  CAS  Google Scholar 

  58. US Patent 4556431, 1985.

  59. Rolz, C., de Arriola, M.C., Valladares, J., and de Cabrera, S., Process Biochem., 1987, vol. 22, no. 1, pp. 17–23.

    CAS  Google Scholar 

  60. Mes-Hartree, M., Dale, B.E., and Craig, W.K., Appl. Microbiol. Biotechnol., 1988, vol. 29, no. 5, pp. 462–468.

    Article  CAS  Google Scholar 

  61. Sudo, K., Shimizu, K., Ishii, T., Fujii, T., and Nagasawa, S., Holzforschung, 1986, vol. 40, no. 6, pp. 339–345.

    Article  CAS  Google Scholar 

  62. Ramos, L.P., Breuil, C., and Saddler, J.N., Appl. Biochem. Biotechnol., 1992, vols. 34–35, no. 1, pp. 37–48.

    Article  Google Scholar 

  63. Tanaka, M., Matsuno, R., and Converse, A.O., Enzyme Microb. Technol., 1990, vol. 12, no. 3, pp. 190–195.

    Article  CAS  Google Scholar 

  64. Kitsos, H.M., Roberts, R.S., and Muzzy, J.D., Bioresour. Technol., 1992, vol. 39, no. 3, pp. 241–247.

    Article  CAS  Google Scholar 

  65. Chum, H.L., Johnson, D.K., and Black, S.K., Ind. Eng. Chem. Res., 1990, vol. 29, no. 2, pp. 156–162.

    Article  CAS  Google Scholar 

  66. Nieves, D.C., Karimi, K., and Horváth, I.S., Ind. Crop. Prod., 2011, vol. 34, no. 1, pp. 1097–1101.

    Article  CAS  Google Scholar 

  67. Gupta, R., Khasa, Y.P., and Kuhad, R.C., Carbohydr. Polym., 2011, vol. 84, no. 3, pp. 1103–1109.

    Article  CAS  Google Scholar 

  68. Mclntosh, S. and Vancov, T., Biomass Bioenergy, 2011, vol. 35, no. 7, pp. 3094–3103.

    Article  CAS  Google Scholar 

  69. He, X., Miao, Y., Jiang, X., Xu, Z., and Ouyang, P., Appl. Biochem. Biotechnol., 2010, vol. 160, no. 8, pp. 2449–2457.

    Article  CAS  Google Scholar 

  70. Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., and Chen, J., Appl. Biochem. Biotechnol., 2010, vol. 162, no. 7, pp. 1872–1880.

    Article  CAS  Google Scholar 

  71. Li, X. and Kim, T.H., Bioresour. Technol., 2011, vol. 102, no. 7, pp. 4779–4786.

    Article  CAS  Google Scholar 

  72. Li, B.-Z., Balan, V., Yuan, Y.-J., and Dale, B.E., Bioresour. Technol., 2010, vol. 101, no. 4, pp. 1285–1292.

    Article  CAS  Google Scholar 

  73. Uppugundla, N., da Costa Sousa, L., Chundawat, S.P.S., Yu, X., Simmons, B., Singh, S., Gao, X., Kumar, R., Wyman, C.E., Dale, B.E., and Balan, V., Biotechnol. Biofuels, 2014, vol. 7, no. 1, p. 72.

    Article  CAS  Google Scholar 

  74. Zakrzewska, M.E., Bogel-Lukasik, E., and BogelLukasik, R., Chem. Rev., 2011, vol. 111, no. 2, pp. 397–417.

    Article  CAS  Google Scholar 

  75. Teghammar, A., Karimi, K., Horvath, I.S., and Taherzadeh, M.J., Biomass Bioenergy, 2012, vol. 36, pp. 116–120.

    Article  CAS  Google Scholar 

  76. Park, J.I., Steen, E.J., Burd, H., Evans, S.S, Redding-Johnson, A.M., Batth, T., Benke, P.I., d’Haeseleer, P., Sun, N., Sale, K.L., Keasling, J.D., Lee, T.S., Petzold, C.J., Mukhopadhyay, A., Singer, S.W., Simmons, B.A., and Gladden, J.M., PloS One, 2012, vol. 7, no. 5, doi 10.1371/journalpone.0037010

    Google Scholar 

  77. García-Cubero, M.T., González-Benito, G., Indacoechea, I., Coca, M., and Bolado, S., Bioresour. Technol., 2009, vol. 100, no. 4, pp. 1608–1613.

    Article  CAS  Google Scholar 

  78. Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M.J., and Horváth, I.S., Bioresour. Technol., 2010, vol. 101, no. 4, pp. 1206–1212.

    Article  CAS  Google Scholar 

  79. Legotskii, S.S. and Goncharov, V.N., Razmalyvayushchee oborudovanie i podgotovka bumazhnoi massy (Milling Equipment and Paper Pulp Preparation), Moscow: Bumazhnaya Promyshlennost’, 1990.

    Google Scholar 

  80. Gosh, P. and Singh, A., Adv. Appl. Microbiol., 1993, vol. 39, pp. 295–333.

    Article  Google Scholar 

  81. Baryshnikov, S.V., Sharypov, V.I., Beregovtsova, N.G., Taran, O.P., Agabekov, V.E., and Kuznetsov, B.N., Zh. Sib. Fed. Univ., Khim., 2014, vol. 7, no. 3, pp. 455–463.

    Google Scholar 

  82. Nakayama, E. and Okamura, K., Mokuzai Gakkaishi, 1989, vol. 35, no. 3, pp. 251–260.

    Google Scholar 

  83. Schwald, W., Breuil, C., Brownell, H.H., Chan, M., and Saddler, J.M., Appl. Biochem. Biotechnol., 1989, vols. 20–21, no. 1, pp. 29–44.

    Article  Google Scholar 

  84. Brownell, H.H. and Saddler, J.N., Biotechnol. Bioeng., 1987, vol. 29, no. 2, pp. 228–235.

    Article  CAS  Google Scholar 

  85. Glasser, W.G., For. Prod. J., 1981, vol. 31, no. 3, pp. 24–29.

    CAS  Google Scholar 

  86. Sinitsyn, A.P., Gusakov, A.V., and Vlasenko, E.Yu., Appl. Biochem. Biotechnol., 1991, vol. 30, no. 1, pp. 43–59.

    Article  CAS  Google Scholar 

  87. Sarymsakov, A.A., Baltaeva, M.M., Nabiev, D.S., Rashidova, S.Sh., and Yugai, G.M., Khim. Rastit. Syr’ya, 2004, no. 2, pp. 11–16.

    Google Scholar 

  88. Whittaker, A.G. and Mingos, D.M.P., J. Microwave Power Electromagn. Energy, 1994, vol. 29, no. 4, pp. 195–219.

    Google Scholar 

  89. Kardos, N. and Luche, J.-L., Carbohydr. Res., 2001, vol. 332, no. 2, pp. 115–131.

    Article  CAS  Google Scholar 

  90. Wu, Y., Wu, Z.H., Zhang, X.J., Zhang, J.L., and Yan, X.X., Key Eng. Mater., 2014, vols. 609–610, pp. 526–530.

    Article  Google Scholar 

  91. Zawadzki, J., Radomski, A., Zielenkiewicz, T., Wysocka-Robak, A., Przybysz, P., and Maksimowski, P., Wood Res., 2012, vol. 57, no. 2, pp. 279–284.

    CAS  Google Scholar 

  92. Wang, X., Fang, G., Hu, C., and Du, T., J. Appl. Polym. Sci., 2008, vol. 109, no. 5, pp. 2762–2767.

    Article  CAS  Google Scholar 

  93. Yachmenev, V.G., Bertoniere, N.R., and Blanchard, E.J., J. Chem. Technol. Biotechnol., 2002, vol. 77, no. 5, pp. 559–567.

    Article  CAS  Google Scholar 

  94. Yachmenev, V.G., Blanchard, E.J., and Lambert, A.H., Ultrasonics, 2004, vol. 42, nos. 1–9, pp. 87–91.

    Article  CAS  Google Scholar 

  95. Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods for the Activation of Chemical Processes), Novosibirsk: Nauka, 1986.

    Google Scholar 

  96. Dasari, R.K. and Berson, R.E., Appl. Biochem. Biotechnol., 2007, vol. 137, no. 1, pp. 289–299.

    Google Scholar 

  97. Silva, G.G.D., Couturier, M., Berrin, J.-G., Buléon, A., and Rouau, X., Bioresour. Technol., 2012, vol. 103, no. 1, pp. 192–200.

    Article  CAS  Google Scholar 

  98. Hall, M., Bansal, P., Lee, J.H., Realff, M.J., and Bommarius, A.S., FEBS J., 2010, vol. 277, no. 6, pp. 1571–1582.

    Article  CAS  Google Scholar 

  99. Baryshnikov, S.V., Sharypov, V.I., Zhyzhaev, A.M., Beregovtsova, N.G., and Kuznetsov, B.N., Zh. Sib. Fed. Univ., Khim., 2010, vol. 3, no. 2, pp. 120–127.

    Google Scholar 

  100. Pestunov, A.V., Kuz’min, A.O., Yatsenko, D.A., Pravdina, M.Kh., and Taran, O.P., Zh. Sib. Fed. Univ., Khim., 2015, vol. 8, no. 3, pp. 386–400.

    Article  Google Scholar 

  101. Schwanninger, M., Rodrigues, J.C., Pereira, H., and Hinterstoisser, B., Vib. Spectrosc., 2004, vol. 36, no. 1, pp. 23–40.

    Article  CAS  Google Scholar 

  102. Furcht, P.W. and Silla, H., Biotechnol. Bioeng., 1990, vol. 35, no. 6, pp. 630–645.

    Article  CAS  Google Scholar 

  103. Tassinari, T. and Macy, C., Biotechnol. Bioeng., 1977, vol. 19, no. 9, pp. 1321–1330.

    Article  CAS  Google Scholar 

  104. SU Patent 1518123, 1989.

  105. SU Patent 1591 924, 1990.

  106. Zhang, P.F., Pei, Z.J., Wang, D.H., Wu, X.R., Cong, W.L., Zhang, M., and Deines, T., J. Manuf. Sci. Eng., 2011, vol. 133, no. 1, p. 011012.

    Article  Google Scholar 

  107. Velmurugan, R. and Muthukumar, K., Biochem. Eng. J., 2012. vol. 63, pp. 1–9.

    Article  CAS  Google Scholar 

  108. Sun, Y. and Cheng, J., Bioresour. Technol., 2002, vol. 83, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  109. Özbek, B. and Ülgen, K.Ö., Process Biochem., 2000, vol. 35, no. 9, pp. 1037–1043.

    Article  Google Scholar 

  110. Zavarukhin, S.G., Strel’tsov, I.A., and Yakovlev, V.A., Kinet. Catal., 2011, vol. 52, no. 4, pp. 499–505.

    Article  CAS  Google Scholar 

  111. Saddler, J.N., Brownell, H.H., Clermont, L.P., and Levitin, N., Biotechnol. Bioeng., 1982, vol. 24, no. 6, pp. 1389–1402.

    Article  CAS  Google Scholar 

  112. Brownell, H. and Saddler, J., Biotechnol. Bioeng. Symp., 1984, vol. 14, pp. 55–68.

    CAS  Google Scholar 

  113. Excoffier, G., Toussaint, B., and Vignon, M.R., Biotechnol. Bioeng., 1991, vol. 38, no. 11, pp. 1308–1317.

    Article  CAS  Google Scholar 

  114. Allen, S.G., Kam, L.C., Zemann, A.J., and Antal, M.J., Ind. Eng. Chem. Res., 1996, vol. 35, no. 8, pp. 2709–2715.

    Article  CAS  Google Scholar 

  115. Pérez, J.A., González, A., Oliva, J.M., Ballesteros, I, and Manzanares, P., J. Chem. Technol. Biotechnol., 2007, vol. 82, no. 10, pp. 929–938.

    Article  CAS  Google Scholar 

  116. Chandra, R., Takeuchi, H., and Hasegawa, T., Appl. Energy, 2012, vol. 94, pp. 129–140.

    Article  CAS  Google Scholar 

  117. Cara, C., Ruiz, E., Ballesteros, I., Negro, M.J., and Castro, E., Process Biochem., 2006, vol. 41, no. 2, pp. 423–429.

    Article  CAS  Google Scholar 

  118. Cara, C., Romero, I., Oliva, J.M., Sáez, F., and Castro, E., Appl. Biochem. Biotechnol., 2007, vol. 137, no. 1, pp. 379–394.

    Google Scholar 

  119. Hideno, A., Inoue, H., Yanagida, T., Tsukahara, K., Endo, T., and Sawayama, S., Bioresour. Technol., 2012, vol. 104, pp. 743–748.

    Article  CAS  Google Scholar 

  120. Schwald, W., Smaridge, T., Chan, M., Breuil, C., and Saddler, J. N., in Enzyme Systems for Lignocellulose Degradation, Coughlan, M.P., Ed., London: Elsevier, 1989, pp. 231–242.

  121. Saritha, M., Arora, A., and Lata A, Indian J. Microbiol., 2012, vol. 52, no. 2, pp. 122–130.

    Article  CAS  Google Scholar 

  122. Mot, A.C. and Silaghi-Dumitrescu, R., Biochemistry, 2012, vol. 77, no. 12, pp. 1395–1407.

    CAS  Google Scholar 

  123. Givaudan, A., Effosse, A., Faure, D., Potier, P., Bouillant M.-L., and Bally, R., FEMS Microbiol. Lett., 1993, vol. 108, no. 2, pp. 205–210.

    Article  CAS  Google Scholar 

  124. Hullo, M.-F., Moszer, I., Danchin, A., and Martin-Verstraete, I., J. Bacteriol., 2001, vol. 183, no. 18, pp. 5426–5430.

    Article  CAS  Google Scholar 

  125. Ruijssenaars, H.J. and Hartmans, S., Appl. Microbiol. Biotechnol., 2004, vol. 65, no. 2, pp. 177–182.

    Article  CAS  Google Scholar 

  126. Kallio, J.P., Auer, S., Jänis, J., Andberg, M., Kruus, K., Rouvinen, J., Koivula, A., and Hakulinen, N., J. Mol. Biol., 2009, vol. 392, no. 4, pp. 895–909.

    Article  CAS  Google Scholar 

  127. Berka, R.M., Schneider, P., Golightly, E.J., Brown, S.H., Madden, M., Brown, K.M., Halkier, T., Mondorf, K., and Xu, F., Appl. Environ. Microbiol., 1997, vol. 63, no. 8, pp. 3151–3157.

    CAS  Google Scholar 

  128. Liers, C., Ullrich, R., Pecyna, M., Schlosser, D., and Hofrichter, M., Enzyme Microb. Technol., 2007, vol. 41, nos. 6–7, pp. 785–793.

    Article  CAS  Google Scholar 

  129. Chowdhury, P., Hari, R., Chakraborty, B., Mandal, B., Naskar, S., and Das, N., Pak. J. Biol. Sci., 2014, vol. 17, no. 2, pp. 173–181.

    Article  CAS  Google Scholar 

  130. Sondhi, S., Sharma, P., Saini, S., Puri, N., and Gupta, N., PloS One, 2014, vol. 9, no. 5. doi 10.1371/ journalpone.0096951

    Google Scholar 

  131. Qiu, W. and Chen, H., Bioresour. Technol., 2012, vol. 118, pp. 8–12.

    Article  CAS  Google Scholar 

  132. Palonen, H. and Viikari, L., Biotechnol. Bioeng., 2004, vol. 86, no. 5, pp. 550–557.

    Article  CAS  Google Scholar 

  133. Vares, T., Kalsi, M., and Hatakka, A., Appl. Environ. Microbiol., 1995, vol. 61, no. 10, pp. 3515–3520.

    CAS  Google Scholar 

  134. Bourbonnais, R. and Paice, M.G., FEBS Lett., 1990, vol. 267, no. 1, pp. 99–102.

    Article  CAS  Google Scholar 

  135. Gutiérrez, A., Rencoret, J., Cadena, E.M., Rico, A., Barth, D., del Río, J.C., and Martínez, Á.T., Bioresour. Technol., 2012, vol. 119, pp. 114–122.

    Article  CAS  Google Scholar 

  136. Lu, L., Zhao, M., Zhang, B.-B., Yu, S.-Y., Bian, X.-J., Wang, W., and Wang, Y., Appl. Microbiol. Biotechnol., 2007, vol. 74, no. 6, pp. 1232–1239.

    Article  CAS  Google Scholar 

  137. Rodríguez Couto, S. and Toca Herrera, J.L., Biotechnol. Adv., 2006, vol. 24, no. 5, pp. 500–513.

    Article  CAS  Google Scholar 

  138. Ruiz-Dueñas, F.J. and Martínez, A.T., Microb. Biotechnol., 2009, vol. 2, no. 2, pp. 164–177.

    Article  CAS  Google Scholar 

  139. Jun, H., Kieselbach, T., and Jönsson, L.J., Microb. Cell Fact., 2011, vol. 10, no. 1, pp. 68–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gromov.

Additional information

Original Russian Text © N.V. Gromov, O.P. Taran, K.N. Sorokina, T.I. Mishchenko, S. Uthandi, V.N. Parmon, 2016, published in Kataliz v Promyshlennosti.

This article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, N.V., Taran, O.P., Sorokina, K.N. et al. New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 1: Methods for biomass activation. Catal. Ind. 8, 176–186 (2016). https://doi.org/10.1134/S2070050416020057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050416020057

Keywords

Navigation