Skip to main content
Log in

Stabilization of alkaline promoters in the structure of iron-oxide dehydrogenation catalysts

  • Domestic Catalysts
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A series of mixed polyferrites of β"-alumina type M2FeIIFe III11−q Ln q O17, where q = 0.1–1.0; M = K, Cs, Rb; and Ln = Sc, Y, Ce, Sm, were synthesized. Their cation and electron conductivities and catalytic activity in the conversion of ethylbenzene into styrene were measured, and the relative chemical stability was determined. The mechanism of stabilization of the alkaline promoter in the catalyst structure during the doping of mixed potassium–cesium polyferrites with rare-earth oxides was considered. The requirements for the doping agent were formulated. The most promising way of stabilizing the alkaline promoter in a mixed potassium–cesium polyferrite system was shown to be the introduction of samarium oxide in amounts corresponding to q = 0.25–0.30, which is no more than 1.5 wt % based on the catalyst formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dvoretskii, N.V., Stepanov, E.G., Yun, V.V., and Kotel’nikov, G.R., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1990, vol. 33, no. 8, pp. 3–9.

    CAS  Google Scholar 

  2. Shekhah, O., Ranke, W., Schüle, A., Kolios, G., and Schlögl, R., Angew. Chem., Int. Ed., 2003, vol. 42, no. 46, pp. 5760–5763.

    Article  CAS  Google Scholar 

  3. Meima, G.R. and Menon, P.G., Appl. Catal., A, 2001, vol. 212, nos. 1–2, pp. 239–245.

    Article  CAS  Google Scholar 

  4. Holmlid, L. and Menon, P.G., Appl. Catal., A, 2001, vol. 212, nos. 1–2, pp. 247–255.

    Article  CAS  Google Scholar 

  5. De Souza Ramos, M., de Santana Santos, M., Gomes, L.P., Albornoz, A., and do Carmo Rangel, M., Appl. Catal., A, 2008, vol. 341, nos. 1–2, pp. 12–17.

    Article  Google Scholar 

  6. Serafin, I., Kotarba, A., Grzywa, M., Sojka, Z., Binczycka, H., and Kustrowski, P., J. Catal., vol. 239, no. 1, pp. 137–144.

  7. Trebala, M., Bieniasz, W., Drozdek, M., Molenda, M., Kotarba, A., and Sojka, Z., Funct. Mater. Lett., 2011, vol. 4, no. 2, pp. 179–182.

    Article  CAS  Google Scholar 

  8. Kotarba, A., Kruk, I., and Sojka, Z., J. Catal., 2004, vol. 221, no. 2, pp. 650–652.

    Article  CAS  Google Scholar 

  9. Kotarba, A., Rozek, W., Serafin, I., and Sojka, Z., J. Catal., 2007, vol. 247, no. 2, pp. 238–244.

    Article  CAS  Google Scholar 

  10. Khimiya i tekhnologiya redkikh i rasseyannykh elementov (Chemistry and Technology of Rare and Trace Elements), Bol’shakov, K.A, Eds., Moscow: Vysshaya Shkola, 1976.

  11. Nariki, S., Ito, S., Uchinokura, K., and Yoneda, N., J. Ceram. Soc. Jpn., 1988, vol. 96, no. 2, pp. 186–192.

    Article  CAS  Google Scholar 

  12. Dvoretskii, N.V. and Anikanova, L.G., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 5, no. 9, pp. 64–66.

    Google Scholar 

  13. Anikanova, L.G. and Dvoretskii, N.V., Catal. Ind., 2013, vol. 5, no. 1, pp. 74–79.

    Article  Google Scholar 

  14. Dvoretskii, N.V., Stepanov, E.G., and Yun, V.V., Izv. Akad. Nauk SSSR, Neorg. Mater., 1991, vol. 27, no. 6, pp. 1265–1268.

    CAS  Google Scholar 

  15. Dvoretskii, N.V. and Anikanova, L.G., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, no. 8, pp. 52–54.

    CAS  Google Scholar 

  16. Kotel’nikov, G.R., Stepanov, E.G., Kachalov, D.V., and Kuzhin, A.V., Abstract of Papers, Trudy mezhdunarodnoi nauchnoi konferentsi “Khimiya, khimicheskaya tekhnologiya i biotekhnologiya” (Proc. Int. Sci. Conf. “Chemistry, Chemical Engineering, and Biotechnology”), Tomsk, 2006, pp. 81–82.

    Google Scholar 

  17. Lee, E.H., Catal. Rev., 1973, vol. 8, no. 2, pp. 285–305.

    CAS  Google Scholar 

  18. Mross, W.D., Catal. Rev.: Sci. Eng., 1983, vol. 25, no. 4, pp. 591–637.

    Article  CAS  Google Scholar 

  19. Anikanova, L.G. and Dvoretskii, N.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2013, vol. 56, no. 1, pp. 31–35.

    CAS  Google Scholar 

  20. Kotarba, A., Bieniasz, W., Kustrowski, P., Stadnicka, K., and Sojka, Z., Appl. Catal., A, 2011, vol. 407, nos. 1–2, pp. 100–105.

    Article  CAS  Google Scholar 

  21. Lamberov, A.A., Gil’manov, Kh.Kh., Dement’eva, E.V., Shatokhina, E.V., and Gil’mullin, R.R., Katal. Prom-sti, 2007, no. 6, pp. 18–25.

    Google Scholar 

  22. Lamberov, A.A. and Gil’manov, Kh.Kh., Modernizatsiya katalizatorov i tekhnologii sinteza izoprena na OAO “Nizhnekamskneftekhim” (Modernization of Catalysts and Isoprene Synthesis Technology at OAO Nizhnekamskneftekhm), Kazan: Izd. Kazan. Fed. Univ., 2012.

    Google Scholar 

  23. Lai, W.-J. and Bai, Z.-G., Chin, J. Catal., 1986, vol. 7, no. 2, pp. 147–153.

    CAS  Google Scholar 

  24. Dudley, G.J., Steele, B.C.H., and Howe, A.T., J. Solid State Chem., 1976, vol. 18, no. 2, pp. 141–147.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Anikanova.

Additional information

Original Russian Text © L.G. Anikanova, N.V. Dvoretskii, 2016, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikanova, L.G., Dvoretskii, N.V. Stabilization of alkaline promoters in the structure of iron-oxide dehydrogenation catalysts. Catal. Ind. 8, 145–151 (2016). https://doi.org/10.1134/S2070050416020021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050416020021

Keywords

Navigation