Skip to main content
Log in

Zeolite catalysts with various porous structures in the synthesis of pyridines

  • Catalysis in Chemical and Petrochemical Industry
  • Published:
Catalysis in Industry Aims and scope Submit manuscript


Development of catalysts based on modified zeolites with a microporous or micro/mesoporous structure and on microporous metallosilicates is aimed at creating high-selectivity method of obtaining pyridine and alkylpyridines. In this study, pyridine and methylpyridines have been synthesized for the first time via the heterogeneous catalytic reaction of ethanol with formaldehyde and ammonia catalyzed by the microporous zeolites Y, Beta, ZSM-12, and ZSM-5 in the H-form and by a granular zeolite Y with a combined, micro-meso-macroporous structure (HY-MMM). The latter zeolite is particularly effective in the synthesis of picolines, affording a picoline selectivity of 46–63% at an ethanol conversion of 70–80%. Among the microporous catalysts, the most active ones are the highly decationized zeolites H-Y and H-Beta. The major products of the reaction occurring over H-Beta and H-ZSM-5 are pyridine (up to 50%) and picolines (up to 40%), and the main products of the same reaction carried out over H-Y and H-ZSM-12 are picolines (45–52%) and lutidines (19–25%). For zeolite H-Y-MMM, the ethanol conversion and the composition of pyridines depend on the reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Golunski, S.E. and Jackson, D., Appl. Catal., 1986, vol. 23, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  2. Henry, G.D., Tetrahedron, 2004, vol. 60, no. 29, pp. 6043–6061.

    Article  CAS  Google Scholar 

  3. Scriven, E.F.V., Toomey, J.E., and Murugan, R., in Kirk-Othmer Encyclopedia of Chemical Technology, Kroschwitz, J.I. and Howe-Grant, M., Eds., New York: Wiley, 1996, vol. 20, pp. 641–679.

  4. Higasio, Y.S. and Shoji, T., Appl. Catal., A, 2001, vol. 221, nos. 1–2, pp. 197–207.

    Article  CAS  Google Scholar 

  5. Weissermel, K. and Arpe, H.J., Industrial Organic Chemistry, New York: Wiley, 2008.

    Google Scholar 

  6. Pyridines—IHS Chemical Economics Handbook. Cited September 21, 2015.

  7. Krishna Mohan Kandepi, V.V. and Narender, N., Catal. Sci. Technol., 2012, vol. 2, pp. 471–487.

    Article  Google Scholar 

  8. Reddy, K.S.K., Sreedhar, I. and Raghavan, K.V., Appl. Catal., A, 2008, vol. 339, no. 1, pp. 15–20.

    Article  CAS  Google Scholar 

  9. Reddy, K.S.K., Sreedhar, I., Venkateshwar, S., and Raghavan, K.V., Catal. Lett., 2008, vol. 125, no. 1, pp. 110–115.

    Article  CAS  Google Scholar 

  10. Reddy, K.S.K., Sreedhar, I., and Raghavan, K.V., Can. J. Chem. Eng., 2011, vol. 89, no. 4, pp. 854–863.

    Article  CAS  Google Scholar 

  11. EP Patent 0837849, 2002.

  12. US Patent 7365204, 2008.

  13. Shimizu, S., Abe, N., Iguchi, A., Dohba, M., Sato, H., and Hirose, K., Microporous Mesoporous Mater., 1998, vol. 21, nos. 4–6, pp. 447–451.

    Article  CAS  Google Scholar 

  14. EP Patent 1167352, 2006.

  15. US Patent 6281362, 2001.

  16. Van der Gaag, F.J., Louter, F., Oudejans, J.C. and van Bekkum, H., Appl. Catal., 1986, vol. 26, pp. 191–201.

    Article  Google Scholar 

  17. Rama Rao, A.V., Kulkarni, S.J., Ramachandra Rao, R., and Subrahmanyanm, M., Appl. Catal., A, 1994, vol. 111, no. 2, pp. L101–L108.

    Google Scholar 

  18. Kulkarni, S.J., Ramachandra Rao, R., Subrahmanyanm, M. and Rama Rao, A.V., Appl. Catal., A, 1994, vol. 113, no. 1, pp. 1–7.

    Article  CAS  Google Scholar 

  19. Khazipova, A.N., Pavlova, I.N., Grigor’eva, N.G., Kutepov, B.I., Pavlov, M.L., and Basimova, R.A., Khim. Tekhnol., 2012, no. 1, pp. 5–9.

    Google Scholar 

  20. RF Patent 2 456 238, 2012.

  21. Khazipova, A.N., Kutepov, B.I., Pavlov, M.L., Grigor’eva, N.G., Shestopal, Ya.L., Pashkina, A.N., and Travkin, E.A., Russ. J. Appl. Chem., 2007, vol. 80, no. 11, pp. 1841–1844.

    Article  CAS  Google Scholar 

  22. Yushchenko, V.V., Zh. Fiz. Khim., 1997, vol. 71, no. 4, pp. 628–632.

    CAS  Google Scholar 

  23. Plachenov, T.G. and Kolosentsev, S.D., Porometriya (Porosimetry), Moscow: Khimiya, 1988.

    Google Scholar 

  24. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals of Adsorption Technique), Moscow: Khimiya, 1975.

    Google Scholar 

  25. Basimova, R.A., Liquid-phase disproportionation of diethylbenzenes and benzene to ethylbenzene over zeolite catalysts, Cand. Sci. (Chem.) Dissertation, Ufa: Inst. Petrochem. Catal. RAS, 2009.

    Google Scholar 

  26. Baerlocher, C., McCusker, L.B., and Olson, D.H., Atlas of Zeolite Framework Types, Amsterdam: Elsevier, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. G. Grigor’eva.

Additional information

Original Russian Text © N.G. Grigor’eva, N.A. Filippova, A.N. Khazipova, O.S. Travkina, B.I. Kutepov, 2015, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’eva, N.G., Filippova, N.A., Khazipova, A.N. et al. Zeolite catalysts with various porous structures in the synthesis of pyridines. Catal. Ind. 7, 287–292 (2015).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: