Advertisement

Catalysis in Industry

, Volume 6, Issue 2, pp 114–121 | Cite as

Catalytic oxidation of carbon black under the conditions of a weak contact in the presence of M/Ce0.72Zr0.18Pr0.1O2, where m is platinum, palladium, and ruthenium

  • A. V. Malyutin
  • E. Yu. LibermanEmail author
  • A. I. Mikhailichenko
  • Ya. V. Zubavichus
  • V. Yu. Murzin
  • A. G. Koshkin
  • V. A. D’yakonov
  • E. N. Filatov
  • T. V. Kon’kova
Catalysis and Environmental Protection

Abstract

Nanodisperse M/Ce0.72Zr0.18Pr0.1O2 catalysts, where M is Pt, Pd, and Ru in amounts of 0.5, 1.0, and 2.0 wt %, for the afterburning of carbon black in the exhaust fumes of diesel engines under the conditions of a weak contact are synthesized. The structural, textural, and catalytic properties of the samples are studied by means of energy dispersive X-ray spectroscopy (EDX), synchrotron X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), extended X-ray absorption fine structure (EXAFS), transmission electronic microscopy (TEM), low-temperature nitrogen adsorption, and thermogravimetric analysis-differential scanning calorimetry (TG-DSC). It is shown that metal-support interaction, growing in the order Pt → Pd → Ru, occurs as platinum metals are impregnated into the surface of a Ce0.72Zr0.18Pr0.1O2 support. Ruthenium-containing catalysts are the ones most active for the afterburning of carbon black, due not only by the nature of the impregnated component, but also to the relatively ill-defined metal-support interaction, as compared to platinum and palladium samples. An ∼190°C drop in the temperature of oxidation onset and an ∼120°C drop in the temperature of complete oxidation, relative to these same parameters for a support free of platinum group elements, is characteristic of these. The high activity of 0.5%Ru/Ce0.72Zr0.18Pr0.1O2 enables us to purify diesel exhausts of carbon black effectively while using relatively small amounts of the noble metal, making it possible to lower the price of catalyst converters of diesel exhausts.

Keywords

nanodisperse materials catalytic afterburning of carbon black solid solutions cerium dioxide platinum palladium ruthenium XANES and EXAFS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steenland, K., Deddens, J., and Stayner, L., Am. J. Ind. Med., 1998, vol. 34, no. 3, pp. 220–228.CrossRefGoogle Scholar
  2. 2.
    IARC: Diesel Engine Exhaust Carcinogenic, International Agency for Research on Cancer, press release no. 213, 2012.Google Scholar
  3. 3.
    Grigorieva, A.V., Goodilin, E.A., Derlyukova, L.E., Anufrieva, T.A., Tarasov, A.B., Dobrovolskii, Y.A., and Tretyakov, Y.D., Appl. Catal., A, 2009, vol. 362, nos. 1–2, pp. 20–25.CrossRefGoogle Scholar
  4. 4.
    Malutin, A.V., Liberman, E.Yu., Mikhailichenko, A.I., Avetisov, I.Kh., Koshkin, A.G., and Kon’kova, T.V., Katal. Prom-sti., 2013, no. 3, pp. 54–59.Google Scholar
  5. 5.
    Reyes, P., Konig, M.E., Pecchi, G., Concha, I., López Granados, M., and Fierro, J.L.G., Catal. Lett., 1997, vol. 46, nos. 1–2, pp. 71–75.CrossRefGoogle Scholar
  6. 6.
    Gandao, Z., Coq, B., de Ménorval, L.C., and Tichit, D., Appl. Catal., A, 1996, vol. 147, no. 2, pp. 395–406.CrossRefGoogle Scholar
  7. 7.
    Veligzhanin, A.A., Zubavichus, Ya.V., Chernyshov, A.A., Trigub, A.L., Khlebnikov, A.S., Nizovskii, A.I., Khudorozhkov, A.K., Beck, I.é., and Bukhtiyarov, V.I., J. Struct. Chem., 2010, vol. 51, no. 1 (suppl.), pp. S20–S27.CrossRefGoogle Scholar
  8. 8.
    Ravel, B. and Newville, M., J. Synchrotron Radiat., 2005, vol. 12, no. 4, pp. 537–541.CrossRefGoogle Scholar
  9. 9.
    Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D., Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 58, no. 12, pp. 7565–7576.CrossRefGoogle Scholar
  10. 10.
    Zhang, F., Jin, Q., and Chan, S.-W., J. Appl. Phys., 2004, vol. 95, no. 8, pp. 4319–4326.CrossRefGoogle Scholar
  11. 11.
    Nagai, Y., Hirabayashi, T., Dohmae, K., Takagi, N., Minami, T., Shinjoh, H., and Matsumoto, S., J. Catal., 2006, vol. 242, no. 1, pp.103–109.CrossRefGoogle Scholar
  12. 12.
    Bera, P., Patil, K.C., Jayaram, V., Subbanna, G.N., and Hegde, M.S., J. Catal., 2000, vol. 196, no. 2, pp. 293–301.CrossRefGoogle Scholar
  13. 13.
    Wong, J., Lytle, F.W., Messmer, R.P., and Maylotte, D.H., Phys. Rev. B: Condens. Matter Mater. Phys., 1984, vol. 30, no. 12, pp. 5596–5610.CrossRefGoogle Scholar
  14. 14.
    Arcon, I., Mirtic, B., and Kodre, A., J. Am. Ceram. Soc., 1998, vol. 81, no. 1, pp. 222–224.CrossRefGoogle Scholar
  15. 15.
    Pantelouris, A., Modrow, H., Pantelouris M., Hormes, J., and Reinen, D., Chem. Phys., 2004, vol. 300, nos. 1–3, pp. 13–22.CrossRefGoogle Scholar
  16. 16.
    Arcon, I., Bencan, A., Kodre, A., and Kosec, M., X-Ray Spectrom., 2007, vol. 36, no. 5, pp. 301–304.CrossRefGoogle Scholar
  17. 17.
    Bearden, J.A. and Burr, A.F., Rev. Mod. Phys., 1967, vol. 39, no. 1, pp. 125–142.CrossRefGoogle Scholar
  18. 18.
    Yoshida, H., Nonoyama, S., Yazawa, Y., and Hattori, T., Phys. Scr., 2005, vol. T115, pp. 813–815.CrossRefGoogle Scholar
  19. 19.
    Hall, M.D., Foran, G.J., Zhang, M., Beale, P.J., and Hambley, T.W., J. Am. Chem. Soc., 2003, vol. 125, no. 25, pp. 7524–7525.CrossRefGoogle Scholar
  20. 20.
    Bera, P., Priolkar, K.R., Gayen, A., Sarode, P.R., Hegde, M.S., Emura, S., Kumashiro, R., Jayaram, V., and Subbanna, G.N., Chem. Mater., 2003, vol. 15, no. 10, pp. 2049–2060.CrossRefGoogle Scholar
  21. 21.
    Takeguchi, T., Manabe, S., Kikuchi, R., Eguchi, K., Kanazawa, T., Matsumoto, S., and Ueda, W., Appl. Catal., A, 2005, vol. 293, pp. 91–96.CrossRefGoogle Scholar
  22. 22.
    Gulyaev, R.V., The interaction of palladium with the surface of cerium-containing supports and the role of surface phases in the oxidation reaction of CO, Cand. Sci. (Chem.) Dissertation, Novosibirsk: Boreskov Institute of Catalysis, 2010.Google Scholar
  23. 23.
    Vargas, E., Simakov, A., Rangel, R., and Castillyn, F., CO oxidation over Ce-Ru-O catalysts, 20th North American Catalysis Meeting, Houston, TX, 2007.Google Scholar
  24. 24.
    Singh, P. and Hegde, M.S., Chem. Mater., 2009, vol. 21, no. 14, pp. 3337–3345.CrossRefGoogle Scholar
  25. 25.
    Hosokawa, S., Taniguchi, M., Utani, K., Kanai, H., and Imamura, S. Appl. Catal., A, 2005, vol. 289, no. 2, pp. 115–120.CrossRefGoogle Scholar
  26. 26.
    Aouad, S., Saab, E., Abi-Aad, E., and Aboukaïs, A., Kinet. Catal., 2007, vol. 48, no. 6, pp. 835–840.CrossRefGoogle Scholar
  27. 27.
    Aouad, S., Abi-Aad, E., and Aboukaïs, A., Appl. Catal., B, 2009, vol. 88, nos. 3–4, pp. 249–256.CrossRefGoogle Scholar
  28. 28.
    Zaletova, N.V., Turakulova, A.O., Kutsev, S.V., and Lunin, V.V., Moscow Univ. Chem. Bull., 2009, vol. 64, no. 1, pp. 1–5.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Malyutin
    • 1
  • E. Yu. Liberman
    • 1
    Email author
  • A. I. Mikhailichenko
    • 1
  • Ya. V. Zubavichus
    • 2
  • V. Yu. Murzin
    • 2
  • A. G. Koshkin
    • 1
  • V. A. D’yakonov
    • 3
  • E. N. Filatov
    • 1
  • T. V. Kon’kova
    • 1
  1. 1.Mendeleyev University of Chemical TechnologyMoscowRussia
  2. 2.National Research Center Kurchatov InstituteKurchatov Center of Converging of Nano-, Bio-, Information, and Cognitive Sciences and TechnologiesMoscowRussia
  3. 3.OAO KompozitMoscowRussia

Personalised recommendations