Skip to main content
Log in

Selection of modifying additives for improving the steam tolerance of methane afterburning palladium catalysts

  • General Review
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

In this work, we discuss the problem of the afterburning of methane from the exhaust gases of automobile engines fueled by natural gas. In exhaust neutralizers, the PdO/Al2O3 catalyst, the main drawback of which is the reduction of its activity under the action of steam that always present in exhaust gases, is commonly used. To improve the tolerance to steam, a series of PdO-Me x O y /Al2O3 binary catalysts (Me is Co, Cu, Fe, Ni, Mn, or Sn) was prepared and studied. Comparative tests under conditions modeling the methane afterburning process in automobile neutralizers show that Pd catalysts promoted with nickel, cobalt, and tin oxides are more resistant to the inhibiting action of steam. The high crystallinity of supported PdO and its uniform distribution over the surface of modified Al2O3 are indicated as criteria for the stability of catalysts in the presence of steam. Optimization of the concentration of promotors and the preparation method used for their introduction allows the deactivation of Pd catalysts under the action of steam to be almost completely eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciuparu, D., Lyubovsky, M. R., Altman, E., Pfefferle, L.D., et al., Catal. Rev. Sci. Eng., 2002, vol. 44, no. 4, p. 593.

    Article  CAS  Google Scholar 

  2. Choudhary, T., Banerjee, S., and Choudhary, V., Appl. Catal. A: General, 2002, vol. 234, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  3. Gélin, P. and Primet, M., Appl. Catal. B: Environ., 2002, vol. 39, no. 1, p. 1.

    Article  Google Scholar 

  4. Janbey, A., Clark, W., Noordally, E., Grimes, S., et al., Chemosphere, 2003, vol. 52, no. 6, p. 1041.

    CAS  Google Scholar 

  5. Cullis, C.F. and Willatt, B.M., J. Catal., 1983, vol. 83, no. 2, p. 267.

    Article  CAS  Google Scholar 

  6. Oh, S.H., Mitchell, P.J., and Siewert, R.M., J. Catal., 1991, vol. 132, no. 2, p. 287.

    Article  CAS  Google Scholar 

  7. Pakulska, M.M., Grgicak, C.M., and Giorgi, J.B., Appl. Catal. A: General, 2007, vol. 332, no. 1, p. 124.

    Article  CAS  Google Scholar 

  8. Zavyalova, U., Scholz, P., and Ondruschka, B., Appl. Catal. A: General, 2007, vol. 323, p. 226.

    Article  CAS  Google Scholar 

  9. Águila, A., Gracia, F., Cortés, J., and Araya, P., Appl. Catal. B: Environ., 2008, vol. 77, nos. 3–4, p. 325.

    Article  Google Scholar 

  10. Hu, J., Chu, W., and Shi, L., J. Natur. Gas Chem., 2008, vol. 17, no. 2, p. 159.

    Article  CAS  Google Scholar 

  11. Guerrero, S., Araya, P., and Wolf, E. E., Appl. Catal. A: General, 2006, vol. 298, p. 243.

    Article  CAS  Google Scholar 

  12. van Giezen, J.C., van der Berg, F.R., Kleinen, J.L., van Dillen, A. J., et al., Catal. Today, 1999, vol. 47, nos. 1–4, p. 287.

    Article  Google Scholar 

  13. Burch, R. and Loader, P.K., Appl. Catal. B: Environ., 1994, vol. 5, nos. 1–2, p. 149.

    Article  CAS  Google Scholar 

  14. Burch, R., Urbano, F.J., and Loader, P.K., Appl. Catal. A: General, 1995, vol. 123, no. 1, p. 173.

    Article  CAS  Google Scholar 

  15. Burch, R., Crittle, D.J., and Hayes, M.J., Catal. Today, 1999, vol. 47, nos. 1–4, p. 229.

    Article  CAS  Google Scholar 

  16. Ciuparu, D. and Pfefferle, L., Appl. Catal. A: General, 2001, vol. 209, nos. 1–2, p. 415.

    Article  CAS  Google Scholar 

  17. Kucharczyk, B. and Tylus, W., Catal. Today, 2008, vol. 137, nos. 2–4, p. 324.

    Article  CAS  Google Scholar 

  18. de la Peña O’shea, V.A., Alvarez-Galvan, M.C., Requies, J., Barrio, V.L., et al., Catal. Commun., 2007, vol. 8, no. 8, p. 1287.

    Article  Google Scholar 

  19. Persson, K., Ersson, A., Jansson, K., Iverlund, N., et al., J. Catal., 2005, vol. 231, no. 1, p. 139.

    Article  CAS  Google Scholar 

  20. Requies, J., Alvarez-Galvan, M.C., Barrio, V.L., Arias, P.L., et al., Appl. Catal. B: Environ., 2008, vol. 79, no. 2, p. 122.

    Article  CAS  Google Scholar 

  21. Long, E., Zhang, X., Li, Y., Liu, Z., et al., J. Natur. Gas Chem., 2010, vol. 19, no. 2, p. 134.

    Article  CAS  Google Scholar 

  22. Kikuchi, R., Maeda, S., Sasaki, K., Wennerström, S., et al., Appl. Catal. A: General, 2002, vol. 232, nos. 1–2, p. 23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.A. Mashkovtsev, A.K. Khudorozhkov, I.E. Beck, A.V. Porsin, I.P. Prosvirin, V.N. Rychkov, V.I. Bukhtiyarov, 2011, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashkovtsev, M.A., Khudorozhkov, A.K., Beck, I.E. et al. Selection of modifying additives for improving the steam tolerance of methane afterburning palladium catalysts. Catal. Ind. 3, 350–357 (2011). https://doi.org/10.1134/S2070050411040052

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050411040052

Keywords

Navigation