Skip to main content
Log in

Investigation of the thermal stability of the chromia-alumina catalysts for the process of the one-stage dehydrogenation of n-butane

  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The effect of the hugh-temperature (800–1000°C) treatment in air of the Cr2O3/Al2O3 catalyst, which contained 18Cr2O3 + 0.4Na+, wt % and was prepared under laboratory conditions with the use of Pural SB1 grade high-purity pseudoboehmite, on the variation in the phase composition of the catalyst, specific surface, and catalytic characteristics in the dehydrogenation reaction of n-butane (yield and selectivity by ΣC4 olefins and 1,3-butadiene, conversion of n-butane) was investigated depending on the calcination temperature of the catalyst. It is shown that thermal stability depends on the following main factors: the method preparation of catalysts, the phase composition of the starting aluminum hydroxide, carrier texture, and the presence of modifying additions and impurities of other metals. In the case of the same chemical composition of the catalyst, the samples obtained by the wet mixing of pseudoboehmite with an aqueous solution of chromic anhydride are most thermally stable compared with the impregnation samples. It is established that the addition of cerium improves the thermal stability and activity of the impregnation Al-Cr catalyst, while the impurity of the Fe3+ ions (up to 0.1 wt %) does not worsen these characteristics. The investigated samples of the catalyst are more thermally stable than the imported industrial catalyst, which loses activity and specific surface after calcination at 900–1000°C. The determination of the thermal stability of fresh catalysts and the factors affecting it can be used as the preliminary evaluation of the future lifetime of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tyuryaev, I.Ya., Teoreticheskie osnovy polucheniya butadiena i izoprena metodom degidrirovaniya (Theoretical Foundations of Obtaining Butadiene and Isoprene by the Dehydrogenation Method), Kiev: Naukova Dumka, 1973.

    Google Scholar 

  2. Pakhomov, N.A., Molchanov, V.V., Zolotovskii, B.P., et al., Katal. Prom., 2008, Special issue, p. 13.

  3. Pakhomov, N.A., Sovremennoe sostoyanie i perspektivy razvitiya protsessov degidrirovaniya. Promyshlennyi kataliz v lektsiyakh, vyp. 6 (Modern State and Prospects of the Development of Dehydrogenation Processes, Industrial Catalysis in Lections, issue 6), Moscow: Kalvis, 2006.

    Google Scholar 

  4. Kotel’nikov, G.R., Zh. Prikl. Khim., 1997, vol. 70, no. 2, p. 276.

    CAS  Google Scholar 

  5. Buyanov, R.A. and Pakhomov, N.A., Kinet. Katal., 2001, vol. 42, no. 1, p. 72.

    Article  Google Scholar 

  6. Bhasin, M.M., McCain, J.H., Vora, B.V., et al., Appl. Catal. A: General, 2001, vol. 221, nos. 1–2, p. 397.

    Article  CAS  Google Scholar 

  7. Kotelínikov, G.R. and Kachalov, D.V., Kinet. Katal., 2001, vol. 42, no. 5, p. 790.

    Google Scholar 

  8. Weckhuysen, B.M. and Schoonheydt, R.A., Catal. Today, 1999, vol. 51, no. 2, p. 223.

    Article  CAS  Google Scholar 

  9. Puurunen, R.L. and Weckhuysen, B.M., J. Catal., 2002, vol. 210, no. 2, p. 418.

    Article  CAS  Google Scholar 

  10. Vuurman, M.A., Hardcastle, F.D., and Wachs, I.E., J. Molecul. Catal., 1993, vol. 84, no. 2, p. 193.

    Article  CAS  Google Scholar 

  11. Sanfilippo, D., Cattech, 2000, vol. 4, no. 1, p. 56.

    Article  CAS  Google Scholar 

  12. Airaksinen, S.M.K., Kanervo, J.M., and Krause, A.O.I., Stud. Surf. Sci. Catal., 2001, vol. 136, p. 153.

    Article  CAS  Google Scholar 

  13. Hakuli, A., Kytokivi, A., and Krause, A.O.I., J. Catal., 1996, vol. 161, no. 1, p. 393.

    Article  CAS  Google Scholar 

  14. Cavani, F., Koutyrev, M., Trifilo, F., et al., J. Catal., 1996, vol. 158, no. 1, p. 236.

    Article  CAS  Google Scholar 

  15. Cabrera, F., Ardissone, D., and Gorris, O.F., Catal. Today, 2008, vols. 133–135, nos. 1–4, p. 800.

    Article  Google Scholar 

  16. Kutokivi, A., Jacobs, J.-P., Hakuli, A., et al., J. Catal., 1996, vol. 162, no. 2, p. 190.

    Article  Google Scholar 

  17. Novyi katalizator dlya Tobol’skogo butadiena (A New Catalyst for Tobol’sk Butadiene), OOO Tobolísk-Neftekhim, http://nf.tn.tob.ru/news.phpextend, 116.

  18. Kirpichnikov, A.P., Liakumovich, A.G., Pobedimskii, D.G., and Popova, L.M., Khimiya i tekhnologiya monomerov dlya sinteticheskogo kauchuka (Chemistry and Technology of Monomers for Synthetic Caoutchouc), Leningrad: Khimiya, 1981.

    Google Scholar 

  19. Dzis’ko, V.A., Karnaukhov, A.P., and Tarasova, D.V., Fiziko-khimicheskie osnovy sinteza okisnykh katalizatorov (Physicochemical Foundations of the Synthesis of Oxide Catalysts), Novosibirsk: Nauka, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.S. Babenko, N.A. Pakhomov, R.A. Buyanov, 2009, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.S., Pakhomov, N.A. & Buyanov, R.A. Investigation of the thermal stability of the chromia-alumina catalysts for the process of the one-stage dehydrogenation of n-butane. Catal. Ind. 1, 43–49 (2009). https://doi.org/10.1134/S2070050409010061

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050409010061

Keywords

Navigation