Skip to main content
Log in

Collective Motions of Atoms in Crystals

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The collective motions of atoms in the molecular dynamics model of a classical Lennard-Jones monocrystal are studied in the process of heating up to a spinodal decomposition and subsequent cooling of the melt until spontaneous crystallization. A hysteresis in the degree of collectivity of atomic motions is found. A new numerical method based on the use of a four-point correlator is used to study the collectivity in the motion of atoms in crystals. This correlator represents the mean cosine of the angle between the displacement vectors of two atoms over time τ, which were initially close to each other. Two features are found: (a) the correlator increases with the temperature in the monocrystal; (b) the correlator in the polycrystal, which was formed during crystallization, appears to be higher than in the initial monocrystal. The distributions of the correlator’s values over the angles between displacements are computed. Two contributions to the atoms’ motions are distinguished: an anisotropic motion, which does not depend on temperature, and an almost isotropic motion, whose angular distribution has the form of a Boltzmann distribution. The excitation energies, which corresponds to the second contribution, are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, Physics of Simple Liquids (North-Holland. Amsterdam, 1968; Mir, Moscow, 1971).

  2. I. Z. Fisher, A. V. Zatovskii, and N. P. Malomuzh, “Hydrodynamic asymptotic form of the rotational motion correlation function of a molecule in a liquid,” Sov. Phys. JETP 38, 146–150 (1974).

    Google Scholar 

  3. R. C. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics (Wiley, New York, 1975; Mir, Moscow, 1978) [Vol. 2 of Russian translation].

  4. T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 2nd ed. (Pergamon Press, Oxford, 2012).

    Google Scholar 

  5. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids: With Applications to Soft Matter (Academic Press, Oxford, 2013).

    MATH  Google Scholar 

  6. N. P. Malomuzh and T. V. Lokotosh, “Lagrange theory of thermal hydrodynamic fluctuations and collective diffusion in liquids,” Phys. A 286, 474–488 (2000). https://doi.org/10.1016/S0378-4371(00)00107-2

    Article  Google Scholar 

  7. L. A. Bulavin, T. V. Lokotosh, and N. P. Malomuzh, “Role of the collective self-diffusion in water and other liquids,” J. Mol. Liq. 137, 1–24 (2008). https://doi.org/10.1016/j.molliq.2007.05.003

    Article  Google Scholar 

  8. W. Schirmacher, B. Schmid, and H. Sinn, “Theory of collective excitations in simple liquids,” Eur. Phys. J.: Spec. Top. 196, 3–13 (2011). https://doi.org/10.1140/epjst/e2011-01413-4

    Article  Google Scholar 

  9. Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, and V. V. Brazhkin, “Anomalous behavior of dispersion of longitudinal and transverse collective excitations in water,” J. Mol. Liq. 287, 110992 (2019). https://doi.org/10.1016/j.molliq.2019.110992

    Article  Google Scholar 

  10. N. V. Priezjev, “Heterogeneous relaxation dynamics in amorphous materials under cyclic loading,” Phys. Rev. E 87, 052302 (2013). https://doi.org/10.1103/PhysRevE.87.052302

    Article  Google Scholar 

  11. N. M. Chtchelkatchev and R. E. Ryltsev, “Complex singularities of the fluid velocity autocorrelation function,” JETP Lett. 102 (10), 643–649 (2015). https://doi.org/10.1134/S0021364015220038

    Article  Google Scholar 

  12. M. A. Orekhov, “Coordination numbers of bivalent ions in organic solvents,” Russ. J. Phys. Chem. A 95, 2059–2064 (2021). https://doi.org/10.1134/S0036024421100204

    Article  Google Scholar 

  13. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed (Academic Press, San Diego, 2002).

  14. G. E. Norman and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Math. Models Comput. Simul. 5, 305–333 (2013). https://doi.org/10.1134/S2070048213040108

    Article  MathSciNet  Google Scholar 

  15. P. H. Poole, C. Donati. and S. C. Glotzer, “Spatial correlations of particle displacements in a glass-forming liquid,” Phys. A 261, 51–59 (1998). https://doi.org/10.1016/S0378-4371(98)00376-8

    Article  Google Scholar 

  16. N. Lačević;, F. W. Starr, T. B. Schrøder, and S. C. Glotzer, “Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function,” J. Chem. Phys. 119, 7372–7387 (2003). https://doi.org/10.1063/1.1605094

    Article  Google Scholar 

  17. V. P. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, “Collective motions in computer models of water. Large-scale and long-time correlations,” J. Struct. Chem. 54, S233–S251 (2013). https://doi.org/10.1134/S0022476613080052

    Article  Google Scholar 

  18. A. V. Anikeenko, G. G. Malenkov, and Yu. I. Naberukhin, “Visualization of the collective vortex-like motions in liquid argon and water: Molecular dynamics simulation,” J. Chem. Phys. 148, 094508 (2018). https://doi.org/10.1063/1.5018140

    Article  Google Scholar 

  19. A. V. Anikeenko and Yu. I. Naberukhin, “Large-scale and long-term correlations in collective motions of atoms of liquid argon. Computer simulation,” JETP Lett. 106, 290–294 (2017). https://doi.org/10.1134/S0021364017170064

    Article  Google Scholar 

  20. A. V. Anikeenko, G. G. Malenkov, and Yu. I. Naberukhin, “Visualization of vortex movements in a molecular dynamics model of liquid argon,” Dokl. Phys. Chem. 472, 16–18 (2017). https://doi.org/10.1134/S0012501617010043

    Article  Google Scholar 

  21. G. E. Norman, V. V. Pisarev, and D. Iu. Fleita, “Singularity at the point of transition from equilibrium to metastable states of a metallic melt,” JETP Lett. 109, 667–670 (2019). https://doi.org/10.1134/S002136401910014X

    Article  Google Scholar 

  22. V. Negodin, Y. Polyachenko, D. Fleita, V. Pisarev, and G. Norman, “Kinetic singularities at transition points from equilibrium to metastable states of the Lennard-Jones particle system,” J. Mol. Liq. 322, 114954 (2021). https://doi.org/10.1016/j.molliq.2020.114954

    Article  Google Scholar 

  23. G. E. Norman and D. I. Fleita, “Collective motion of atoms in a superheated crystal and a supercooled melt of a simple metal,” JETP Lett. 111, 245–250 (2020). https://doi.org/10.1134/S0021364020040104

    Article  Google Scholar 

  24. A. Travesset, “Phase diagram of power law and Lennard-Jones systems: Crystal phases,” J. Chem. Phys. 141, 164501 (2014). https://doi.org/10.1063/1.4898371

    Article  Google Scholar 

  25. C. Vega, F. J. Blas, and A. Galindo, “Extending Wertheim’s perturbation theory to the solid phase of Lennard-Jones chains: Determination of the global phase diagram,” J. Chem. Phys. 116, 7645–7655 (2002). https://doi.org/10.1063/1.1465397

    Article  Google Scholar 

  26. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  27. V. Stegailov, E. Dlinnova, T. Ismagilov, M. Khalilov, N. Kondratyuk, D. Makagon, A. Semenov, A. Simonov, G. Smirnov, and A. Timofeev, “Angara interconnect makes GPU-based Desmos supercomputer an efficient tool for molecular dynamics calculations,” Int. J. High Perform. Comput. Appl. 33, 507–521 (2019). https://doi.org/10.1177/1094342019826667

    Article  Google Scholar 

  28. E. Dlinnova, S. Biryukov, and V. Stegailov, “Energy consumption of MD calculations on hybrid and CPU-only supercomputers with air and immersion cooling,” in Parallel Computing: Technology Trends, Ed. by I. Foster, G. R. Joubert et al., Advances in Parallel Computing, Vol. 36 (IOS Press, Amsterdam, 2020), pp. 574–582. https://doi.org/10.3233/APC200087

  29. A. Shamsutdinov, M. Khalilov, T. Ismagilov, A. Piryugin, S. Biryukov, V. Stegailov, and A. Timofeev, “Performance of supercomputers based on Angara interconnect and novel AMD CPUs / GPUs,” in Mathematical Modeling and Supercomputer Technologies, MMST 2020, Ed. by D. Balandin, K. Barkalov et al., Communications in Computer and Information Science, Vol. 1413 (Springer, Cham, 2020), pp. 401–416. https://doi.org/10.1007/978-3-030-78759-2_33

  30. I. Z. Fisher, Statistical Theory of Liquids (Fizmatgiz, Moscow, 1961; Univ. of Chicago Press, Chicago, 1964).

  31. G. R. Stewart, “Measurement of low-temperature specific heat,” Rev. Sci. Instrum. 54, 1–11 (1983). https://doi.org/10.1063/1.1137207

    Article  Google Scholar 

  32. S.-K. Oh, “Modified Lennard-Jones potentials with a reduced temperature-correction parameter for calculating thermodynamic and transport properties: Noble gases and their mixtures (He, Ne, Ar, Kr, and Xe),” J. Thermodyn. 2013, 828620 (2013). https://doi.org/10.1155/2013/828620

    Article  Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980; Fizmatlit, Moscow, 2002).

  34. A. Kh. Khrgian, Physics of Atmosphere (Gidrometeoizdat, Leningrad, 1969) [in Russian].

    Google Scholar 

  35. L. A. Maksimov, A. V. Mikheenkov, and I. Ya. Polishchuk, Lectures on Statistical Physics: Textbook (MFTI, Moscow, 2015) [in Russian].

    Google Scholar 

  36. D. V. Sivukhin, General Course of Physics, Vol. 4: Optics, 3rd ed. (Fizmatlit, Moscow, 2005) [in Russian]; V. L. Ginzburg, L. M. Levin, D. V. Sivukhin, and E. S. Chetverikova, Problems in Undergraduate Physics, Vol. III: Optics (Pergamon Press, Oxford, 1965).

Download references

ACKNOWLEDGMENTS

We thank V.V. Pisarev for his interest in the study and his discussion of the study. The calculations were carried out on the Desmos and Fisher computing clusters of the Joint Institute for High Temperatures of the Russian Academy of Sciences.

Funding

This study was supported by the Russian Science Foundation (grant no. 18-19-00734) and the Russian Ministry of Science and Higher Education under state assignment no. 075-00460-21-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Negodin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negodin, V.D., Fleita, D.I. & Norman, G.E. Collective Motions of Atoms in Crystals. Math Models Comput Simul 15, 1075–1083 (2023). https://doi.org/10.1134/S2070048223060157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223060157

Keywords:

Navigation