Skip to main content
Log in

Mathematical Model of COVID-19 Progression: Prediction of Severity and Outcome

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The objective of the study is to develop a method that enables to predict disease severity at the moment of admission to an intensive care unit and to choose appropriate respiratory support. The problem of patient classification by disease course is solved by using information about comorbid chronic states and a modified comorbidity index. To prove the applicability of the index for severe COVID-19 patients, we developed a mathematical model for disease progression. The estimated values of the model parameters showed the difference between probabilities of transition to critical states and/or lethal outcome in different groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Hua, C. Qian, Z. Luo et al., “Invasive mechanical ventilation in COVID-19 patient management: the experience with 469 patients in Wuhan,” Crit. Care 24 (1), 348 (2020). https://doi.org/10.1186/s13054-020-03044-9

    Article  Google Scholar 

  2. L. S. Menga, C. Berardi, E. Ruggiero et al., “Noninvasive respiratory support for acute respiratory failure due to COVID-19,” Curr. Opin. Crit. Care 28 (1), 25–50 (2022). https://doi.org/10.1097/mcc.0000000000000902

    Article  Google Scholar 

  3. M. Antonelli, G. Conti, M. L. Moro et al., “Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study,” Intensive Care Med. 27 (11), 1718–1728 (2001). https://doi.org/10.1007/s00134-001-1114-4

    Article  Google Scholar 

  4. S. Baker, W. Xiang, and I. Atkinson, “Continuous and automatic mortality risk prediction using vital signs in the intensive care unit: a hybrid neural network approach,” Sci. Rep. 10, 21282 (2020). https://doi.org/10.1038/s41598-020-78184-7

    Article  Google Scholar 

  5. P.J.H. Hulshof, N. Kortbeek, R.J.Boucherie et al., “Taxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MS,” Health Syst. 1, 129–175 (2012). https://doi.org/10.1057/hs.2012.18

    Article  Google Scholar 

  6. I. M. Longini Jr., W. S. Clark, R. H. Byers et al., “Statistical analysis of the stages of HIV infection using a Markov model,” Stat. Med. 8, 831–843 (1989). https://doi.org/10.1002/sim.4780080708

    Article  Google Scholar 

  7. A. Moran, D. Gu, D. Zhao et al., “Future cardiovascular disease in China: Markov model and risk factor scenario projections from the coronary heart disease policy model–China,” Circ.: Cardiovasc. Qual. Outcomes 3, 243–252 (2010). https://doi.org/10.1161/circoutcomes.109.910711

    Article  Google Scholar 

  8. M. S. Rangel Frausto, D. Pittet, T. Hwang et al., “The dynamics of disease progression in sepsis: Markov modeling describing the natural history and the likely impact of effective antisepsis agents,” Clin. Infect. Dis. 27, 185–190 (1998). https://doi.org/10.1086/514630

    Article  Google Scholar 

  9. L. Peelen, N. F. de Keizer, E. de Jonge et al., “Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit,” J. Biomed. Inf. 43, 273–286 (2010). https://doi.org/10.1016/j.jbi.2009.10.002

    Article  Google Scholar 

  10. C. A. King, H. Englander, P. T. Korthuis et al., “Designing and validating a Markov model for hospital-based addiction consult service impact on 12-month drug and non-drug related mortality,” PloS One 16, e0256793 (2021). https://doi.org/10.1371/journal.pone.0256793

    Article  Google Scholar 

  11. D. Yu. Belousov, E. V. Afanasyeva, A. S. Beketov, and Yu. B. Belousov, “Prediction of the impact of statins on direct medical costs in secondary prevention for patients at high risk of developing cardiovascular diseases,” Kach. Klin. Prak., No. 1, 97–115 (2011).

  12. N. D. Yushchuk, O. O. Znoiko, N. A. Yakushechkina et al., “The burden of viral hepatitides in the Russian Federation and ways of its reduction for the long term (in case of hepatitis C),” Ter. Arkh. 85 (12), 79–85 (2013).

    Google Scholar 

  13. A. V. Rudakova, S. M. Kharit, L. V. Lyalina et al., “Cost-effectiveness of quadrivalent human papillomavirus vaccination in adolescent girls in the Russian Federation,” Pediatr. Farmakol. 14, 494–500 (2017). https://doi.org/10.15690/pf.v14i6.1832

    Article  Google Scholar 

  14. D. Hazard, K. Kaier, M. von Cube et al., “Joint analysis of duration of ventilation, length of intensive care, and mortality of COVID-19 patients: a multistate approach,” BMC Med, Res. Methodol. 20, 206 (2020). https://doi.org/10.1186/s12874-020-01082-z

    Article  Google Scholar 

  15. V. Ya. Kiselevskaya-Babinina, K. A. Popugaev, V. A. Molodov, and I. V. Kiselevskaya-Babinina, “Utilization of infectious bed resources during the Covid-19 epidemic depending on patient characteristics,” Neotlozhnaya Med. Pomoshch 12 (3) (2023) (in press).

  16. M. E. Charlson, P. Pompei, K. L. Ales, and C. R. MacKenzie, “A new method of classifying prognostic comorbidity in longitudinal studies: development and validation,” J. Chronic Dis. 40, 373–383 (1987). https://doi.org/10.1016/0021-9681(87)90171-8

    Article  Google Scholar 

  17. W. D’Hoore, C. Sicotte, and C. Tilquin, “Risk adjustment in outcome assessment: The Charlson comorbidity index,” Methods Inf. Med. 32, 382–387 (1993). https://doi.org/10.1055/s-0038-1634956

    Article  Google Scholar 

  18. M. Charlson, M. T. Wells, R.Ullman et al., “The Charlson comorbidity index can be used prospectively to identify patients who will incur high future costs,” PloS One 9, e112479 (2014). https://doi.org/10.1371/journal.pone.0112479

    Article  Google Scholar 

  19. A. V. Molochkov, D. E. Karateev, E. Yu. Ogneva et al., “Comorbidities and predicting the outcome of COVID-19: the treatment results of 13,585 patients hospitalized in the Moscow Region,” Alm. Klin. Med. 48 (1), S1–S10 (2020). https://doi.org/10.18786/2072-0505-2020-48-040

    Article  Google Scholar 

  20. X. Wang, X. Fang, Z. Cai et al., “Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: A systemic review and meta-analysis,” Research 2020, 2402961 (2020). https://doi.org/10.34133/2020/2402961

    Article  Google Scholar 

  21. L. Liu, J. Xie, W. Wu et al., “A simple nomogram for predicting failure of non-invasive respiratory strategies in adults with COVID-19: a retrospective multicentre study,” Lancet Digital Health, 3, e166-e174 (2021). https://doi.org/10.1016/S2589-7500(20)30316-2

    Article  Google Scholar 

  22. Yu. Suhov and M. Kelbert, Markov Chains: A Primer in Random Processes and Their Applications (Cambridge Univ. Press, Cambridge, 2008; MCCME, Moscow, 2010).

  23. A. Agresti, Categorical Data Analysis (Wiley, New York, 2003).

    MATH  Google Scholar 

  24. B. Ripley and W. Venables, Package ‘nnet’, R Package Version 7.3-12 (2016). URL: https://cran.r-hub.io/web/packages/nnet/index.html

  25. W. N. Venables and B. D. Ripley, Modern Applied Statistics with S, 4th ed. (Springer, New York, 2002). https://doi.org/10.1007/978-0-387-21706-2

  26. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman and Hall/CRC, New York, 1994). https://doi.org/10.1201/9780429246593

  27. B. Hu, H. Guo, P. Zhou, and Z.-L. Shi, “Characteristics of SARS-CoV-2 and COVID-19,” Nat. Rev. Microbiol. 19, 141–154 (2021). https://doi.org/10.1038/s41579-020-00459-7

    Article  Google Scholar 

  28. A. E. Ivanova, N. B. Pavlov, and A. Yu. Mikhailov, “Trends and regional peculiarities of adult health in Russia,” Sots. Aspekty Zdorov’ya Naseleniya, No. 3 (19), 25 (2011).

    Google Scholar 

  29. V. Yu. Semenov, “The morbidity of population of the Russian Federation: Geographic characteristics,” Probl. Sots. Gig., Zdravookhr. Istor. Med. 23 (6), 6–9 (2015).

    Google Scholar 

  30. A. K. Singh, A. Singh, R. Singh, and A. Misra, “Molnupiravir in COVID-19: A systematic review of literature,” Diabetes Metab. Syndr.: Clin. Res. Rev. 15, 102329 (2021). https://doi.org/10.1016/j.dsx.2021.102329

    Article  Google Scholar 

  31. G. Fink, N. Orlova-Fink, T. Schindler et al., “Inactivated trivalent influenza vaccination is associated with lower mortality among patients with COVID-19 in Brazil,” BMJ Evid.-Based Med. 26, 192–193 (2021) . https://doi.org/10.1136/bmjebm-2020-111549

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Ministry of Education and Science through grant no. 075-11-2020-011 (13.1902.21.0040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ya. Kisselevskaya-Babinina, A. A. Romanyukha or T. E. Sannikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDIX

APPENDIX

Values of Model Parameter Estimations and Their Confidence Intervals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisselevskaya-Babinina, V.Y., Romanyukha, A.A. & Sannikova, T.E. Mathematical Model of COVID-19 Progression: Prediction of Severity and Outcome. Math Models Comput Simul 15, 987–998 (2023). https://doi.org/10.1134/S2070048223060121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223060121

Keywords:

Navigation