Skip to main content
Log in

On the Density Distribution of a Plasma Generated by a Femtosecond Laser Prepulse

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

We consider the results of computational experiments concerning the expansion of a plasma generated by laser radiation at the stage of a nanosecond prepulse ahead of the main femtosecond-range pulse. A series of plasmodynamic calculations are performed for various laser target materials. It is shown that in the considered problem statement, which corresponds to the typical conditions of full-scale experiments, the distribution of the laser plasma density as a whole is satisfactorily approximated by a simple three-parameter formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

RЕFERENCES

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56 (3), 219–221 (1985). https://doi.org/10.1016/0030-4018(85)90120-8

    Article  Google Scholar 

  2. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92 (17), 175003 (2004). https://doi.org/10.1103/PhysRevLett.92.175003

    Article  Google Scholar 

  3. P. Hadjisolomou, I. P. Tsygvintsev, P. Sasorov, V. Gasilov, G. Korn, and S. V. Bulanov, “Preplasma effects on laser ion generation from thin foil targets,” Phys. Plasmas 27 (1), 013107 (2020). https://doi.org/10.1063/1.5124457

    Article  Google Scholar 

  4. C. S. Liu, V. K. Tripathi, and B. Eliasson, High-Power Laser-Plasma Interaction (Cambridge University Press, Cambridge, 2019). https://doi.org/10.1017/9781108635844

  5. D. A. Tidman and R. A. Shanny, “Field-generating thermal instability in laser-heated plasmas,” Phys. Fluids 17 (6), 1207–1210 (1974). https://doi.org/10.1063/1.1694866

    Article  Google Scholar 

  6. D. A. Tidman, “Strong magnetic fields produced by composition discontinuities in laser-produced plasmas,” Phys. Rev. Lett. 32 (21), 1179–1181 (1974). https://doi.org/10.1103/PhysRevLett.32.1179

    Article  Google Scholar 

  7. A. Yu. Krukovskiy, V. G. Novikov, and I. P. Tsygvintsev, “3D simulation of the impact made by a noncentral laser pulse on a spherical tin target,” Math. Models Comput. Simul. 9 (1), 48–59 (2017). https://doi.org/10.1134/S2070048217010082

    Article  MathSciNet  Google Scholar 

  8. S. Faik, A. Tauschwitz, and I. Iosilevskiy, “The equation of state package FEOS for high energy density matter,” Comput. Phys. Commun. 227, 117–125 (2018). https://doi.org/10.1016/j.cpc.2018.01.008

    Article  Google Scholar 

  9. A. J. Kemp and J. Meyer-ter-Vehn, “An equation of state code for hot dense matter, based on the QEOS description,” Nucl. Instrum. Methods Phys. Res., Sect. A 415 (3), 674–676 (1998). https://doi.org/10.1016/S0168-9002(98)00446-X

  10. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State (Birkhäuser, Basel, 2005). https://doi.org/10.1007/b137687

  11. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Press, 1980).

    MATH  Google Scholar 

  12. T. B. Kaiser, “Laser ray tracing and power deposition on an unstructured three-dimensional grid,” Phys. Rev. E 61 (1), 895–905 (2000). https://doi.org/10.1103/PhysRevE.61.895

    Article  Google Scholar 

  13. M. M. Basko and I. P. Tsygvintsev, “A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals,” Comput. Phys. Commun. 214, 59–70 (2017). https://doi.org/10.1016/j.cpc.2017.01.010

    Article  MathSciNet  MATH  Google Scholar 

  14. I. P. Tsygvintsev, A. Yu. Krukovskiy, V. A. Gasilov, V. G. Novikov, and I. V. Popov, “Mesh-ray model and method for calculating the laser radiation absorption,” Math. Models Comput. Simul. 8 (4), 382–390 (2016). https://doi.org/10.1134/S2070048216040153

    Article  Google Scholar 

  15. I. V. Romanov, I. P. Tsygvintsev, V. L. Paperny, A. A. Kologrivov, Yu. V. Korobkin, A. Yu. Krukovskiy, and A. A. Rupasov, “Influence of the laser plasma-expansion specific on a cathode jet formation and the current stability in a laser-ignited vacuum discharge,” Phys. Plasmas 25 (8), 083107 (2018). https://doi.org/10.1063/1.5037001

    Article  Google Scholar 

Download references

Funding

This study was carried out using the equipment of the Center for Collective Use of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences (supercomputers K-60 and K-100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Tsygvintsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsygvintsev, I.P., Gasilov, V.A. On the Density Distribution of a Plasma Generated by a Femtosecond Laser Prepulse. Math Models Comput Simul 15, 623–629 (2023). https://doi.org/10.1134/S2070048223040191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223040191

Keywords:

Navigation