Skip to main content
Log in

Impact of Energy Input on the Aerodynamic Characteristics and Heat Flux Occurring in the 3D Supersonic Flow Past a Model Aircraft

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The impact of the energy input in the region in front of a model aircraft (a spherically blunted cylinder with wings and tail fins) on the structure of a viscous heat-conducting supersonic (M = 2.5) three-dimensional gas flow is numerically simulated. The simulations are performed using the unsteady Reynolds-averaged Navier–Stokes (URANS) equations and the Spalart–Allmaras (SA) turbulence model. The impact of the attack angle, parameters and placement of the energy input on the model’s aerodynamic characteristics (wave drag and lift) and heat flux on its surface is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

RЕFERENCES

  1. P. Yu. Georgievskii and V. A. Levin, “Supersonic flows past bodies in the presence of external energy input,” Pis’ma Zh. Tech. Fiz. 14 (8), 684–687 (1988).

    Google Scholar 

  2. P. K. Tretyakov, A. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, V. N. Tishchenko, and V. I. Yakovlev, “Control of supersonic flow around bodies by means of high-power recurrent optical breakdown,” Phys.-Dokl. 41 (11), 566–567 (1996).

    Google Scholar 

  3. G. G. Chernyi, Gas Dynamics (Nauka, Moscow, 1988; CRC Press, Boca Raton, 1994).

  4. P. K. Chang, Separation of Flow (Pergamon, New York, 1970).

  5. A. Sasoh, Y. Sekiya, T. Sakai, J.-H. Kim, and A. Matsuda, “Supersonic drag reduction with repetitive laser pulses through a blunt body,” AIAA J. 48 (12), 2811–2817 (2010). https://doi.org/10.2514/1.J050174

    Article  Google Scholar 

  6. E. Erdem, K. Kontis, and L. Yang, “Steady energy deposition at Mach 5 for drag reduction,” Shock Waves 23, 285–298 (2013). https://doi.org/10.1007/s00193-012-0405-8

    Article  Google Scholar 

  7. E. Schülein and A. Zheltovodov, “Effects of steady flow heating by arc discharge upstream of non-slender bodies,” Shock Waves 21, 383–396 (2011). https://doi.org/10.1007/s00193-011-0307-1

    Article  Google Scholar 

  8. Yu. F. Kolesnichenko, V. G. Brovkin, O. A. Azarova, V. G. Grudnitsky, V. A. Laskov, and I. Ch. Mashek, “MW energy deposition for aerodynamic application,” in 41st Aerospace Science Meeting and Exhibit, Reno, NV, USA, 6–9 Jan. 2003, p. 2003-361. https://doi.org/10.2514/6.2003-361

  9. S. M. Aulchenko, V. P. Zamuraev, and A. P. Kalinina, “Effect of one-sided unsteady energy supply on aerodynamic characteristics of airfoils in a transonic flow,” J. Appl. Mech. Tech. Phys. 49 (6), 957–961 (2008). https://doi.org/10.1007/s10808-008-0118-z

    Article  Google Scholar 

  10. V. A. Levin and L. V. Terent’eva, “Supersonic flow around a thin airfoil in the presence of energy output in the neighborhood of its surface,” Report No. 4315 (Inst. Mekh. Mosk. Gos. Univ., Moscow, 1994).

  11. S. Leonov, V. Bityurin, A. Yuriev, S. Pirogov, and B. Zhukov, “Problems in energetic method of drag reduction and flow/flight control,” in 41st Aerospace Science Meeting and Exhibit, Reno, NV, 2003, p. 2003-35. https://doi.org/10.2514/6.2003-35

  12. P. Yu. Georgievskii and V. A. Levin, “Control of the flow past bodies using localized energy addition to the supersonic oncoming flow,” Fluid Dyn. 38 (5), 794–805 (2003). https://doi.org/10.1023/B:FLUI.0000007841.91654.10

    Article  MATH  Google Scholar 

  13. O. Azarova, D. Knight, and Y. Kolesnichenko, “Pulsating stochastic flows accompanying microwave filament/supersonic shock layer interaction,” Shock Waves 21, 439–450 (2011). https://doi.org/10.1007/s00193-011-0319-x

    Article  Google Scholar 

  14. P. Yu. Georgievsky and V. A. Levin, “Transformations of front separation regions controlled by upstream energy deposition,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007, p. 2007-1232. https://doi.org/10.2514/6.2007-1232

  15. V. A. Levin, N. E. Afonina, and V. G. Gromov, “Heat exchange control on sphere surface using a local energy input,” Fiz.-Khim. Kinet. Gazov. Din. (Phys.-Chem. Kinet. Gas Dyn.) 10 (2010).

  16. P.-Q. Elias, “Numerical simulations on the effect and efficiency of long linear energy deposition ahead of a supersonic blunt body: Toward a laser spike,” Aerospace Lab, Issue 10, Paper AL10-03 (2015). https://doi.org/10.12762/2015.AL10-03

  17. V. A. Levin, V. G. Gromov, and N. E. Afonina, “Numerical analysis of the effect of local energy supply on the aerodynamic drag and heat transfer of a spherically blunted body in a supersonic air flow,” J. Appl. Mech. Tech. Phys. 41 (5), 915–922 (2000). https://doi.org/10.1007/BF02468738

    Article  MATH  Google Scholar 

  18. R. Kandala and G. V. Candler, “Numerical studies of laser-induced energy deposition for supersonic flow control,” AIAA J. 42 (11), 2266–2275 (2004). https://doi.org/10.2514/1.6817

    Article  Google Scholar 

  19. K. Satheesh and G. Jagadeesh, “Experimental investigations on the effect of energy deposition in hypersonic blunt body flow field,” Shock Waves 18, 53–70 (2008). https://doi.org/10.1007/s00193-008-0140-3

    Article  Google Scholar 

  20. L. V. Bykov, A. M. Molchanov, M. A. Shcherbakov, and D. S. Yanyshev, Computational Continuum Mechanics in Problems of Aviation and Space Technology (LENAND, Moscow, 2015) [in Russsian].

    Google Scholar 

  21. S. R. Allmaras, F. T. Johnson, and P. R. Spalart, “Modifications and clarifications for the implementation of the Spalart–Allmaras turbulence model,” in Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, 2012, p. ICCFD7-1902.

  22. J. R. Edwards and S. Chandra, “Comparison of eddy viscosity-transport turbulence models for three-dimensional, shock-separated flowfields,” AIAA J. 34 (4), 756–763 (1996). https://doi.org/10.2514/3.13137

    Article  Google Scholar 

  23. S. V. Guvernyuk and K. G. Savinov, “Isobaric separation structures in supersonic flows with a localized inhomogeneity,” Dokl. Phys. 52 (3), 151–155 (2007). https://doi.org/10.1134/S1028335807030068

    Article  Google Scholar 

  24. A. L. Afendikov, Ya. V. Khankhasaeva, A. E. Lutsky et al., “Numerical simulation of the recirculation flow during the supersonic separation of moving bodies,” Math. Models Comput. Simul. 12 (3), 282–292 (2020). https://doi.org/10.1134/S2070048220030035

    Article  MathSciNet  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project 22-11-00126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Khankhasaeva.

Ethics declarations

The author declares that she has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khankhasaeva, Y.V. Impact of Energy Input on the Aerodynamic Characteristics and Heat Flux Occurring in the 3D Supersonic Flow Past a Model Aircraft. Math Models Comput Simul 15, 765–779 (2023). https://doi.org/10.1134/S2070048223040063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223040063

Keywords:

Navigation