Skip to main content
Log in

Test Problems of Gas Suspension Dynamics Using Asymptotically Exact Solutions

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Asymptotically exact solutions of Riemann problems are constructed under the assumption of small scales of dynamic and thermal relaxations of a gas-dispersed mixture. Depending on the parameters of the gas suspension’s states on different sides of the initial arbitrary discontinuities, configurations with two shock waves, a rarefaction wave and a shock wave, as well as two rarefaction waves are formed. For these benchmarks, the computational properties of the balanced algorithm of a hybrid large-particle method, suitable for solving stiff problems, are tested. The features of nonequilibrium wave flows of a gas suspension and the convergence of numerical solutions to asymptotically exact solutions with decreasing particle size of the gas suspension are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. L. Roždestvenskii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, 2nd ed. (Nauka, Moscow, 1978; Am. Math. Soc., Providence, RI, 1983).

  2. C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows (Wiley, New York, 1990).

  3. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman & Hall/CRC, Boca Raton, FL, 2001).

  4. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 2009).

    Book  MATH  Google Scholar 

  5. R. I. Nigmatulin, Dynamics of Multiphase Media, Vols. 1, 2 (Nauka, Moscow, 1987; CRC Press, New York, 1990).

  6. G. A. Ruev, B. L. Rozhdestvenskii, V. M. Fomin, and N. N. Yanenko, “Conservation laws for systems of equations for two-phase media,” Sov. Math. Dokl. 22 (2), 352–357 (1980).

    Google Scholar 

  7. L. A. Klebanov, A. E. Kroshilin, B. I. Nigmatulin, R. I. Nigmatulin, “On the hyperbolicity, stability and correctness of the Cauchy problem for the system of equations of two-speed motion of two-phase media,” J. Appl. Math. Mech., 46 (1), 66–74 (1982). https://doi.org/10.1016/0021-8928(82)90084-3

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Abgrall and R. Saurel, “Discrete equations for physical and numerical compressible multiphase mixtures,” J. Comput. Phys. 186 (2), 361–396 (2003). https://doi.org/10.1016/S0021-9991(03)00011-1

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Saurel and R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows,” J. Comput. Phys. 150 (2), 425–467 (1999). https://doi.org/10.1006/jcph.1999.6187

    Article  MathSciNet  MATH  Google Scholar 

  10. S. A. Tokareva and E. F. Toro, “HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow,” J. Comput. Phys. 229 (10), 3573–3604 (2010). https://doi.org/10.1016/j.jcp.2010.01.016

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Dumbser and D. S. Balsara, “A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems,” J. Comput. Phys. 304, 275–319 (2016). https://doi.org/10.1016/j.jcp.2015.10.014

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Menshov and P. Zakharov, “On the composite Riemann problem for multimaterial fluid flows,” Int. J. N-umer. Methods Fluids 76 (2), 109–127 (2014). https://doi.org/10.1002/fld.3927

    Article  MATH  Google Scholar 

  13. B. A. Korneev, R. R. Tukhvatullina, and E. B. Savenkov, “Numerical study of two-phase hyperbolic models,” Math. Models Comput. Simul. 13 (6), 1002–1013 (2021). https://doi.org/10.1134/S2070048221060090

    Article  MathSciNet  Google Scholar 

  14. F. E. Marble, “Dynamics of dusty gases,” Annu. Rev. Fluid Mech. 2, 397–446 (1970). https://doi.org/10.1146/annurev.fl.02.010170.002145

    Article  Google Scholar 

  15. G. M. Arutyunyan, “Conditions of applicability of the results of the hydrodynamics of a perfect gas to disperse media,” Fluid Dyn. 14 (1), 118–121 (1979). https://doi.org/10.1007/BF01050823

    Article  Google Scholar 

  16. V. A. Vakhnenko and B. I. Palamarchuk, “Description of shock-wave processes in a two-phase medium containing an incompressible phase,” J. Appl. Mech. Tech. Phys. 25 (1), 101–107 (1984). https://doi.org/10.1007/BF00916876

    Article  Google Scholar 

  17. A. S. Ivanov, V. V. Kozlov, and D. V. Sadin, “Unsteady flow of a two-phase disperse medium from a cylindrical channel of finite dimensions into the atmosphere,” Fluid Dyn. 31 (3), 386–391 (1996). https://doi.org/10.1007/BF02030221

    Article  MATH  Google Scholar 

  18. D. V. Sadin, Fundamentals of the Theory of Modeling Wave Heterogeneous Processes (Voen. Inzh.-Kosm. Univ., St. Petersburg, 2000) [in Russian].

    Google Scholar 

  19. D. V. Sadin, “TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type,” Comput. Math. Math. Phys. 56 (12), 2068–2078 (2016). https://doi.org/10.1134/S0965542516120137

    Article  MathSciNet  MATH  Google Scholar 

  20. D. V. Sadin, “Application of a hybrid large-particle method to the computation of the interaction of a shock wave with a gas suspension layer,” Komp. Issled. Model. 12 (6), 1323–1338 (2020). https://doi.org/10.20537/2076-7633-2020-12-6-1323-1338

  21. D. V. Sadin, “Efficient implementation of the hybrid large particle method,” Math. Models Comput. Simul. 14 (6), 946–954 (2022). https://doi.org/10.1134/S207004822206014X

    Article  MathSciNet  MATH  Google Scholar 

  22. D. V. Sadin, “Stiffness problem in modeling wave flows of heterogeneous media with a three-temperature scheme of interphase heat and mass transfer,” J. Appl. Mech. Tech. Phys. 43 (2), 286–290 (2002). https://doi.org/10.1023/A:1014714012032

    Article  MATH  Google Scholar 

  23. D. V. Sadin, “A method for computing heterogeneous wave flows with intense phase interaction,” Comput. Math. Math. Phys. 38 (6), 987–993 (1998).

    MathSciNet  MATH  Google Scholar 

  24. A. I. Ivandaev, A. G. Kutushev, and D. A. Rudakov, “Numerical investigation of throwing a powder layer by a compressed gas,” Combust. Explos. Shock Waves 31 (4), 459–465 (1995). https://doi.org/10.1007/BF00789367

    Article  Google Scholar 

  25. D. V. Sadin, “On stiff systems of partial differential equations for motion of heterogeneous media,” Mat. Model. 14 (11), 43–53 (2002).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Sadin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadin, D.V. Test Problems of Gas Suspension Dynamics Using Asymptotically Exact Solutions. Math Models Comput Simul 15, 564–573 (2023). https://doi.org/10.1134/S2070048223030158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223030158

Keywords:

Navigation