Skip to main content
Log in

Comparative Analysis of the Accuracy of Three Different Schemes in the Calculation of Shock Waves

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

We perform a comparative analysis of the accuracy of the weighted essentially nonoscillatory (WENO), compact high-order weak approximation (CWA), and central-upwind (CU) schemes used to compute discontinuous solutions containing shocks propagating with variable velocity. We demonstrate that the the accuracy of the formally high-order WENO and CU schemes, which are constructed using nonlinear flux correction mechanisms, reduces to approximately first order integral convergence on intervals in which one of the endpoints is in the region of influence of a shock wave. At the same time, the CWA scheme, which is designed to be high-order in the weak sense and does not rely on any nonlinear flux corrections, retains approximately the second order of integral convergence even in the regions of influence of shock waves. As a result, in these areas, the accuracy of the WENO and CU schemes is significantly lower than the accuracy of the CWA scheme. We provide a theoretical justification of these numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,” Mat. Sb. 47 (3), 271–306 (1959).

    MathSciNet  MATH  Google Scholar 

  2. B. van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32 (1), 101–136 (1979). https://doi.org/10.1016/0021-9991(79)90145-1

    Article  MATH  Google Scholar 

  3. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49 (3), 357–393 (1983). https://doi.org/10.1016/0021-9991(83)90136-5

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Harten and S. Osher, “Uniformly high-order accurate nonoscillatory schemes. I,” SIAM J. Numer. Anal. 24 (2), 279–309 (1987). https://doi.org/10.1137/0724022

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Nessyahu and E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws,” J. Comput. Phys. 87 (2), 408–463 (1990). https://doi.org/10.1016/0021-9991(90)90260-8

    Article  MathSciNet  MATH  Google Scholar 

  6. X.-D. Liu, S. Osher, and T. Chan, “Weighted essentially non-oscillatory schemes,” J. Comput. Phys. 115 (1), 200–212 (1994). https://doi.org/10.1006/jcph.1994.1187

    Article  MathSciNet  MATH  Google Scholar 

  7. G. S. Jiang and C.-W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126 (1), 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated problems,” in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Ed. by A. Quarteroni, Lecture Notes in Mathematics, Vol. 1697 (Springer, Berlin, 1998), pp. 150–268. https://doi.org/10.1007/BFb0096353

  9. A. Kurganov and E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations,” J. Comput. Phys. 160 (1), 241–282 (2000). https://doi.org/10.1006/jcph.2000.6459

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Kurganov, S. Noelle, and G. Petrova, “Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations,” SIAM J. Sci. Comput. 23 (3), 707–740 (2001). https://doi.org/10.1137/S1064827500373413

    Article  MathSciNet  MATH  Google Scholar 

  11. S. A. Karabasov and V. M. Goloviznin, “Compact Accurately Boundary-Adjusting high-REsolution Technique for fluid dynamics,” J. Comput. Phys. 228 (19), 7426–7451 (2009). https://doi.org/ /10.1016/j.jcp.2009.06.037

    Article  MathSciNet  MATH  Google Scholar 

  12. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  13. V. V. Ostapenko, “Convergence of finite-difference schemes behind a shock front,” Comput. Math. Math. Phys. 37 (10), 1161–1172 (1997).

    MathSciNet  MATH  Google Scholar 

  14. J. Casper and M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound,” SIAM J. Sci. Comput. 19 (3), 813–828 (1998). https://doi.org/10.1137/S1064827595294101

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Engquist and B. Sjögreen, “The convergence rate of finite difference schemes in the presence of shocks,” SIAM J. Numer. Anal. 35 (6), 2464–2485 (1998). https://doi.org/10.1137/S0036142997317584

    Article  MathSciNet  MATH  Google Scholar 

  16. O. A. Kovyrkina and V. V. Ostapenko, “On the convergence of shock-capturing difference schemes,” Dokl. Math. 82 (1), 599–603 (2010). https://doi.org/10.1134/S1064562410040265

    Article  MathSciNet  MATH  Google Scholar 

  17. O. A. Kovyrkina and V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes,” Math. Models Comput. Simul. 6 (2), 183–191 (2014). https://doi.org/10.1134/S2070048214020069

    Article  MathSciNet  Google Scholar 

  18. O. A. Kovyrkina and V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy,” Dokl. Math. 97 (1), 77–81 (2018). https://doi.org/10.1134/S1064562418010246

    Article  MathSciNet  MATH  Google Scholar 

  19. N. A. Zyuzina, O. A. Kovyrkina, and V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence,” Dokl. Math. 98 (2), 506–510 (2018). https://doi.org/10.1134/S1064562418060315

    Article  MathSciNet  MATH  Google Scholar 

  20. M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, and V. F. Tishkin, “On the accuracy of the discontinuous Galerkin method in calculation of shock waves,” Comput. Math. Math. Phys. 58 (8), 1344–1353 (2018). https://doi.org/10.1134/S0965542518080122

    Article  MathSciNet  MATH  Google Scholar 

  21. O. A. Kovyrkina and V. V. Ostapenko, “On monotonicity and accuracy of CABARET scheme for calculation of weak solutions with shocks,” Vychisl. Tekhnol. 23 (2), 37–54 (2018). https://doi.org/10.25743/ICT.2018.23.12757

  22. O. A. Kovyrkina and V. V. Ostapenko, “Accuracy of MUSCL-type schemes in shock wave calculations,” Dokl. Math. 101 (3), 209–213 (2020). https://doi.org/10.1134/S1064562420030126

    Article  MathSciNet  MATH  Google Scholar 

  23. V. V. Ostapenko, “Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity,” Comput. Math. Math. Phys. 38 (8), 1299–1311 (1998).

    MathSciNet  MATH  Google Scholar 

  24. V. V. Rusanov, “Difference schemes of the third order of accuracy for continuous computation of discontinuous solutions,” Sov. Math. Dokl. 9 (6), 771–774 (1968).

    MATH  Google Scholar 

  25. V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves,” Comput. Math. Math. Phys. 40 (12), 1784–1800 (2000).

    MathSciNet  MATH  Google Scholar 

  26. M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, and V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas,” Dokl. Math. 100 (3), 519–523 (2019). https://doi.org/10.1134/S106456241906005X

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Kurganov and C.-T. Lin, “On the reduction of numerical dissipation in central-upwind schemes,” Commun. Comput. Phys. 2 (1), 141–163 (2007). http://global-sci.org/intro/ article_detail/cicp/7900.html

    MathSciNet  MATH  Google Scholar 

  28. P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (Soc. Ind. A-ppl. Math., Philadelphia, 1972).

    Google Scholar 

  29. B. L. Roždestvenskii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, 2nd ed. (Nauka, Moscow, 1978; Am. Math. Soc., Providence, RI, 1983).

  30. P. D. Lax and B. Wendroff, “Systems of conservation laws,” Commun. Pure Appl. Math. 13 (2), 217–237 (1960). https://doi.org/10.1002/cpa.3160130205

    Article  MATH  Google Scholar 

  31. S. Gottlieb, C.-W. Shu, and E. Tadmor, “Strong stability-preserving high-order time discretization methods,” SIAM Rev. 43 (1), 89–112 (2001). https://doi.org/10.1137/S003614450036757X

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Gottlieb, D. Ketcheson, and C.-W. Shu, Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations (World Scientific, Hackensack, NJ, 2011). https://doi.org/10.1142/7498

  33. C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes,” Acta Numer. 29, 701–762 (2020). https://doi.org/10.1017/S0962492920000057

    Article  MathSciNet  MATH  Google Scholar 

  34. R. S. Hirsh, “Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique,” J. Comput. Phys. 19 (1), 90–109 (1975). https://doi.org/10.1016/0021-9991(75)90118-7

    Article  MathSciNet  MATH  Google Scholar 

  35. A. E. Berger, J. M. Solomon, M. Ciment, S. H. Leventhal, and B. C. Weinberg, “Generalized OCI schemes for boundary layer problems,” Math. Comput. 35 (6), 695–731 (1980). https://doi.org/10.1090/S0025-5718-1980-0572850-8

    Article  MathSciNet  Google Scholar 

  36. O. M. Belotserkovskii, A. P. Byrkin, A. P. Mazurov, and A. I. Tolstykh, “Higher-order accuracy difference method for computing viscous gas flows,” USSR Comput. Math. Math. Phys. 22 (6), 206–216 (1982). https://doi.org/10.1016/0041-5553(82)90110-0

    Article  MATH  Google Scholar 

  37. A. I. Tolstykh, Compact Difference Schemes and Their Application to Problems of Aerohydrodynamics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  38. V. V. Ostapenko, “Symmetric compact schemes with artificial viscosities of increased order of divergence,” Comput. Math. Math. Phys. 42 (7), 980–999 (2002).

    MathSciNet  MATH  Google Scholar 

  39. R. W. MacCormack, “The effect of viscosity in hypervelosity impact cratering,” AIAA Paper 69-354 (1969);

  40. J. Spacecr. Rockets 40 (5), 757–763 (2003). https://doi.org/10.2514/2.6901

  41. J. J. Stoker, Water Waves: The Mathematical Theory with Applications (Wiley, New York, 1957; Inostr. Lit., M-oscow, 1959).

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research and the National Natural Science Foundation of China (NSFC) as part of scientific project no. 21-51-53012 and was partially supported by NSFC grants nos. 11771201 and 1201101343, as well as by the Guangdong Provincial Foundation, Laboratory of Computing and Materials Science (no. 2019B030301001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Kovyrkina, A. A. Kurganov or V. V. Ostapenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovyrkina, O.A., Kurganov, A.A. & Ostapenko, V.V. Comparative Analysis of the Accuracy of Three Different Schemes in the Calculation of Shock Waves. Math Models Comput Simul 15, 401–414 (2023). https://doi.org/10.1134/S2070048223030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223030092

Keywords:

Navigation