Skip to main content
Log in

Transient MHD Free Convection Flow, Heat and Mass Transfer in Darcy–Forchheimer Porous Medium in the Presence of Chemical Reaction and Heat Absorption with Soret and Dufour Effects: Element-Free Galerkin Modelling

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The effects of diffuso-thermal (Dufour effect) and thermo-diffusion gradients (Soret effect) on the magneto-hydrodynamic (MHD) unsteady incompressible free convection flow with heat and mass transfer past a semi-infinite vertical porous plate in a Darcy–Forchheimer porous medium in the presence of heat absorption and first order homogenous chemical reaction are analyzed. The governing mathematical model is nondimensionalized using a similarity transformation rendering a system of nonlinear coupled partial differential equations. The nondimensional governing equations along with the boundary conditions are solved by using element-free Galerkin method. The effect of different pertinent flow parameters on velocity, temperature, and concentration distributions and the numerical outcomes are examined and revealed graphically. The velocity of fluid flow is enhanced with weak chemical action. The heat absorption effect reduces the temperature and hence, useful to control the temperature in many chemical engineering applications. A rise in dufour number with simultaneously reducing the soret number (to ensure that the product of soret and dufour numbers remains constant), boots up the temperature of fluid in the porous medium. The heat transfer rate increases with higher chemical reaction parameter and also with an increase in heat absorption parameter. Thus, fast chemical reaction rate and heat absorption parameter can be used to enhance heat transfer rate in many industrial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. J. Lutišan, J. Cvengroš, and M. Micov, “Heat and mass transfer in the evaporating film of a molecular evaporator,” Chem. Eng. J. 85 (2–3), 225–234 (2002). https://doi.org/10.1016/S1385-8947(01)00165-6

    Article  Google Scholar 

  2. C. Kleinstreuer and T.-Y. Wang, “Mixed convection heat and surface mass transfer between power-law fluids and rotating permeable bodies,” Chem. Eng. Sci. 44 (12), 2987–2994 (1989). https://doi.org/10.1016/0009-2509(89)85108-5

    Article  Google Scholar 

  3. R. Mihail and C. Teodorescu, “Catalytic reaction in a porous solid subject to a boundary layer flow,” Chem. Eng. Sci. 33 (2), 169–175 (1978). https://doi.org/10.1016/0009-2509(78)85050-7

    Article  Google Scholar 

  4. R. F. Probstein, Physicochemical Hydrodynamics: An Introduction, Butterworths Series in Chemical Engineering (Butterworth-Heinemann, Boston, 1989). https://doi.org/10.1016/C2013-0-04279-X

  5. R. T. Yang, Gas Separation by Adsorption Processes, Butterworths Series in Chemical Engineering (Butterworth-Heinemann, Boston, 1990). https://doi.org/10.1016/C2013-0-04269-7

  6. S. M. A. G. Ulson de Souza and S. Whitaker, “Mass transfer in porous media with heterogeneous chemical reaction,” Braz. J. Chem. Eng. 20 (2), 191–199 (2003). https://doi.org/10.1590/S0104-66322003000200013

    Article  Google Scholar 

  7. J. E. Gatica, H. J. Viljoen, and V. Hlavacek, “Interaction between chemical reaction and natural convection in porous media,” Chem. Eng. Sci. 44 (9), 1853–1870 (1989). https://doi.org/10.1016/0009-2509(89)85127-9

    Article  Google Scholar 

  8. M. Prud’homme and S. Jasmin, “Inverse solution for a biochemical heat source in a porous medium in the presence of natural convection,” Chem. Eng. Sci. 61 (5), 1667–1675 (2006). https://doi.org/10.1016/j.ces.2005.10.001

    Article  Google Scholar 

  9. O. A. Bég, R. Bhargava, S. Rawat, H. S. Takhar, and T. A. Bég, “A study of buoyancy-driven dissipative micropolar free convection heat and mass transfer in a Darcian porous medium with chemical reaction,” Nonlinear Anal.: Model. Control 12 (2), 157–180 (2007). https://doi.org/10.15388/NA.2007.12.2.14707

    Article  MathSciNet  MATH  Google Scholar 

  10. F. S. Ibrahim, A. M. Elaiw, and A. A. Bakr, “Effect of the chemical reaction and radiation absorption on the unsteady MHD free convection flow past a semi infinite vertical permeable moving plate with heat source and suction,” Commun. Nonlinear Sci. Numer. Simul. 13 (6), 1056–1065 (2008). https://doi.org/10.1016/j.cnsns.2006.09.007

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Zueco, O. A. Bég, T. A. Bég, and H. S. Takhar, “Numerical study of chemically reactive buoyancy-driven heat and mass transfer across a horizontal cylinder in a high-porosity non-Darcian regime,” J. Porous Media 12 (6), 519–535 (2009). https://doi.org/10.1615/JPorMedia.v12.i6.30

    Article  Google Scholar 

  12. A. M. Rashad, A. J. Chamkha, and S. M. M. El-Kabeir, “Effect of chemical reaction on heat and mass transfer by mixed convection flow about a sphere in a saturated porous media,” Int. J. Numer. Methods Heat Fluid Flow 21 (4), 418–433 (2011). https://doi.org/10.1108/09615531111123092

    Article  Google Scholar 

  13. S. Shateyi, “A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction,” Bound. Value Probl. 2013, 196 (2013). https://doi.org/10.1186/1687-2770-2013-196

    Article  MathSciNet  MATH  Google Scholar 

  14. R. S. Tripathy, G. C. Dash, S. R. Mishra, and S. Baag, “Chemical reaction effect on MHD free convective surface over a moving vertical plate through porous medium,” Alexandria Eng. J. 54 (3), 673–679 (2015). https://doi.org/10.1016/j.aej.2015.04.012

    Article  Google Scholar 

  15. F. Mabood, S. Shateyi, M. M. Rashidi, E. Momoniat, and N. Freidoonimehr, “MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction,” Adv. Powder Technol. 27 (2), 742–749 (2016). https://doi.org/10.1016/j.apt.2016.02.033

    Article  Google Scholar 

  16. M. I. Khan, T. Hayat, M. I. Khan, and A. Alsaedi, “A modified homogeneous-heterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating,” Int. J. Heat Mass Transfer 113, 310–317 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.082

    Article  Google Scholar 

  17. T. Hayat, M. Waqas, M. I. Khan, and A. Alsaedi, “Impacts of constructive and destructive chemical reactions in magnetohydrodynamic (MHD) flow of Jeffrey liquid due to nonlinear radially stretched surface,” J. Mol. Liq. 225, 302–310 (2017). https://doi.org/10.1016/j.molliq.2016.11.023

    Article  Google Scholar 

  18. B. Tripathi and B. K. Sharma, “Effect of variable viscosity on MHD inclined arterial blood flow with chemical reaction,” Int. J. Appl. Mech. Eng. 23 (3), 767–785 (2018). https://doi.org/10.2478/ijame-2018-0042

    Article  Google Scholar 

  19. G. S. Seth, A. Bhattacharyya, R. Kumar, and M. K. Mishra, “Modeling and numerical simulation of hydromagnetic natural convection Casson fluid flow with nth-order chemical reaction and Newtonian heating in porous medium,” J. Porous Media 22 (9), 1141–1157 (2019). https://doi.org/10.1615/JPorMedia.2019025699

    Article  Google Scholar 

  20. B. K. Sharma and C. Kumawat, “Impact of temperature dependent viscosity and thermal conductivity on MHD blood flow through a stretching surface with ohmic effect and chemical reaction,” Nonlinear Eng. 10 (1), 255–271 (2021). https://doi.org/10.1515/nleng-2021-0020

    Article  Google Scholar 

  21. O. P. Meena, P. Janapatla, and D. Srinivasacharya, “Mixed convection flow across a vertical cone with heat source/sink and chemical reaction effects,” Math. Models Comput. Simul. 14 (3), 532–546 (2022). https://doi.org/10.1134/S2070048222030127

    Article  MathSciNet  Google Scholar 

  22. Z. Dursunkaya and W. M. Worek, “Diffusion-thermo and thermal-diffusion effects in transient and steady natural convection from a vertical surface,” Int. J. Heat Mass Transfer 35 (8), 2060–2067 (1992). https://doi.org/10.1016/0017-9310(92)90208-A

    Article  Google Scholar 

  23. M. Anghel, H. S. Takhar, and I. Pop, “Dufour and Soret effects on free convection boundary layer over a vertical surface embedded in a porous medium,” Stud. Univ. Babes-Bolyai: Math. 45 (4), 11–21 (2000).

    MATH  Google Scholar 

  24. A. Postelnicu, “Influence of a magnetic field on heat and mass transfer by natural convection from vertical surface in porous media considering Soret and Dufour effects,” Int. J. Heat and Mass Transfer 47 (6–7), 1467–1475 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.017

    Article  MATH  Google Scholar 

  25. C. R. A. Abreu, M. F. Alfradique, and A. Silva Telles, “Boundary layer flows with Dufour and Soret effects: I: Forced and natural convection,” Chem. Eng. Sci. 61 (13), 4282–4289 (2006). https://doi.org/10.1016/j.ces.2005.10.030

    Article  Google Scholar 

  26. O. A. Bég, R. Bharagava, S. Rawat, and E. Kahya, “Numerical study of micropolar convective heat and mass transfer in a non-Darcy porous regime with Soret and Dufour diffusion effects,” Emirates J. Eng. Res. 13 (2), 51–66 (2008).

    Google Scholar 

  27. O. A. Bég, T. A. Bég, A. Y. Bakier, and V. R. Prasad, “Chemically-reacting mixed convective heat and mass transfer along inclined and vertical plates with Soret and Dufour effects: Numerical Solutions,” Int. J. Appl. Math. Mech. 5 (2), 39–57 (2009).

    Google Scholar 

  28. S. R. Vempati and A. B. Laxmi-Narayana-Gari, “Soret and Dufour effects on unsteady MHD flow past an infinite vertical porous plate with thermal radiation,” Appl. Math. Mech. 31 (12), 1481–1496 (2010). https://doi.org/10.1007/s10483-010-1378-9

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Hayat and M. Nawaz, “Soret and Dufour effects on the mixed convection flow of a second grade fluid subject to Hall and ion-slip currents,” Int. J. Numer. Methods Fluids 67 (9), 1073–1099 (2011). https://doi.org/10.1002/fld.2405

    Article  MathSciNet  MATH  Google Scholar 

  30. Ch. RamReddy, P. V. S. N. Murthy, A. J. Chamkha, and A. M. Rashad, “Soret effect on mixed convection flow in a nanofluid under convective boundary condition,” Int. J. Heat Mass Transfer 64, 384–392 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.032

    Article  Google Scholar 

  31. O. Ojjela and N. N. Kumar, “Chemically reacting micropolar fluid flow and heat transfer between expanding or contracting walls with ion slip, Soret and Dufour effects,” Alexandria Eng. J. 55 (2), 1683–1694 (2016). https://doi.org/10.1016/j.aej.2016.02.026

    Article  Google Scholar 

  32. P. Sudarsana Reddy and A. J. Chamkha, “Soret and Dufour effects on MHD convective flow of Al2O3-water and TiO2-water nanofluids past a stretching sheet in porous media with heat generation/absorption,” Adv. Powder Technol. 27 (4), 1207–1218 (2016). https://doi.org/10.1016/j.apt.2016.04.005

    Article  Google Scholar 

  33. J. A. Gbadeyan, T. L. Oyekunle, P. F. Fasogbon, and J. U. Abubakar, “Soret and Dufour effects on heat and mass transfer in chemically reacting MHD flow through a wavy channel,” J. Taibah Univ. Sci. 12 (5), 631–651 (2018). https://doi.org/10.1080/16583655.2018.1492221

    Article  Google Scholar 

  34. A. Shojaei, A. J. Amiri, S. S. Ardahaie, Kh. Hosseinzadeh, and D. D. Ganji, “Hydrothermal analysis of non-Newtonian second grade fluid flow on radiative stretching cylinder with Soret and Dufour effects,” Case Stud. Therm. Eng. 13, 100384 (2019). https://doi.org/10.1016/j.csite.2018.100384

    Article  Google Scholar 

  35. S. A. Shehzad, Z. Abbas, A. Rauf, and Z. Abdelmalek, “Dynamics of fluid flow through Soret–Dufour impacts subject to upward and downward motion of rotating disk,” Int. Commun. Heat Mass Transfer 120, 105025 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.105025

    Article  Google Scholar 

  36. G. R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method (CRC Press, Boca Raton, FL, 2003).

    MATH  Google Scholar 

  37. T. Zhu and S. N. Atluri, “A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method,” Comput. Mech. 21, 211–222 (1998). https://doi.org/10.1007/s004660050296

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Sharma.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R. Transient MHD Free Convection Flow, Heat and Mass Transfer in Darcy–Forchheimer Porous Medium in the Presence of Chemical Reaction and Heat Absorption with Soret and Dufour Effects: Element-Free Galerkin Modelling. Math Models Comput Simul 15, 357–372 (2023). https://doi.org/10.1134/S2070048223020151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223020151

Keywords:

Navigation