Skip to main content
Log in

Parallel Implementation of the 16th-Order Multioperator Scheme: Application to Problems of the Instability of Vortices and Boundary Layers

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A family of schemes for the Euler and Navier–Stokes equations is considered based on multioperator approximations of derivatives with the inversion of two-point operators and that permit very high orders. The general idea of the MPI-parallelization of the type of algorithms considered and the evaluation of parallel efficiency are described. The results of direct numerical simulations of the occurrence and development of two types of instability are presented: the instability of a Gaussian-type vortex in a subsonic flow and the Tollmien–Schlichting instability in a subsonic boundary layer. A common feature of these calculations is the absence of any artificial excitations. The “exciters” of instability were small differences between numerical solutions and exact ones, whose broadband spectra may indicate some analogy with the natural turbulent background in real flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. I. Tolstykh, “Multioperator high-order compact upwind methods for CFD parallel calculations,” in Parallel Computational Fluid Dynamics: Recent Developments and Advances Using Parallel Computers, Ed. by D. R. Emerson (Elsevier, Amsterdam, 1998), pp. 383–390.

    Google Scholar 

  2. A. I. Tolstykh, Compact High-Order Accurate Multioperator Approximations for Partial Differential Equations (Nauka, Moscow, 2015) [in Russian].

    Google Scholar 

  3. A.I. Tolstykh, “Development of arbitrary-order multioperators-based schemes for parallel calculations. 1: Higher-than-fifth-order approximations to convection terms,” J. Comput. Phys. 225 (2), 2333–2353 (2007). https://doi.org/10.1016/j.jcp.2007.03.021

    Article  MathSciNet  MATH  Google Scholar 

  4. A. I. Tolstykh, “On 16th and 32nd order multioperators-based schemes for smooth and discontinuous fluid dynamics solutions,” Commun. Comput. Phys. 22 (2), 572–598 (2017). https://doi.org/10.4208/cicp.141015.240217a

    Article  MathSciNet  MATH  Google Scholar 

  5. M. V. Lipavskii and A. I. Tolstykh, “Tenth-order accurate multioperator scheme and its application in direct numerical simulation,” Comput. Math. Math. Phys. 53 (4), 455–468 (2013). https://doi.org/10.1134/S0965542513040040

    Article  MathSciNet  Google Scholar 

  6. A. I. Tolstykh and D. A. Shirobokov, “Using 16th order multioperators-based scheme for supercomputer simulation of the initial stage of laminar-turbulent transitions,” in Supercomputing, RuSCDays 2021, Ed. by V. Voevodin and S. Sobolev, Communication in Computer and Information Science 1510 (Springer, Cham, 2021), pp, 270–282. https://doi.org/10.1007/978-3-030-92864-3_21.

  7. A. I. Tolstykh and D. A. Shirobokov, “Fast calculations of screech using highly accurate multioperators-based schemes,” Appl. Acoust. 74 (1), 102–109 (2013). https://doi.org/10.1016/j.apacoust.2012.06.013

    Article  Google Scholar 

  8. A. I. Tolstykh and M. V. Lipavskii, “Instability and acoustic fields of the Rankine vortex as seen from long-term calculations with the tenth-order multioperators-based scheme,” Math. Comput. Simul. 147, 301–320 (2018). https://doi.org/10.1016/j.matcom.2017.08.006

    Article  MathSciNet  MATH  Google Scholar 

  9. A. I. Tolstykh and M. V. Lipavskii, “General scenario and fine details of compressible Gaussian vortex unforced instability,” Eur. J. Mech. – B/Fluids 87, 161–170 (2021). https://doi.org/10.1016/j.euromechflu.2021.01.015

    Article  MathSciNet  MATH  Google Scholar 

  10. A. I. Tolstykh and D. A. Shirobokov, “Observing production and growth of Tollmien–Schlichting waves in subsonic flat plate boundary layer via exciters-free high fidelity numerical simulation,” J. Turbul. 21 (11), 632–649 (2020). https://doi.org/10.1080/14685248.2020.1824072

    Article  MathSciNet  Google Scholar 

  11. G. B. Schubauer and H. K. Skramstad, “Laminar-boundary-layer oscillations and transition on a flat plate,” NACA Technical Report NACA-TR-909 (1948).

  12. Z. J. Wang, K. Fidkowski, et al., “High-order CFD methods: current status and perspective,” Int. J. Numer. Methods Fluids 72 (8), 811–845 (2013). https://doi.org/10.1002/fld.3767

    Article  MathSciNet  MATH  Google Scholar 

  13. V. F. Kop’ev and E. A. Leont’ev, “Acoustic instability of an axial vortex,” Sov. Phys. Acoust. 29 (2), 111–115 (1983).

    Google Scholar 

  14. I. Men’shov and Y. Nakamura, “Instability of isolated compressible entropy-stratified vortices,” Phys. Fluids 17 (3), 034102 (2005). https://doi.org/10.1063/1.1851451

    Article  MathSciNet  MATH  Google Scholar 

  15. V. I. Borodulin, V. R. Gaponenko, Y. S. Kachanov, et al., “Late-stage transitional boundary-layer structures. Direct numerical simulation and experiment,” Theor. Comput. Fluid Dyn. 15, 317–337 (2002). https://doi.org/10.1007/s001620100054

    Article  MATH  Google Scholar 

  16. K. S. Yeo, X. Zhao, Z. Y. Wang, and K. C. Ng, “DNS of wavepacket evolution in a Blasius boundary layer,” J. Fluid Mech. 652, 333–372 (2010). https://doi.org/10.1017/S0022112009994095

    Article  MATH  Google Scholar 

  17. C. Liu and P. Lu, “DNS study on physics of late boundary layer transition,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (Nashville, TN, 9–12 January 2012), Paper AIAA 2012-0083. https://doi.org/10.2514/6.2012-83

  18. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968; Nauka, Moscow, 1974).

Download references

ACKNOWLEDGMENTS

The results presented in this paper were obtained using the supercomputers Joint Supercomputer Center, Russian Academy of Sciences, a branch of the Federal Scientific Center Research Institute for System Research, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Lipavskii, A. I. Tolstykh or D. A. Shirobokov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipavskii, M.V., Tolstykh, A.I. & Shirobokov, D.A. Parallel Implementation of the 16th-Order Multioperator Scheme: Application to Problems of the Instability of Vortices and Boundary Layers. Math Models Comput Simul 15, 167–176 (2023). https://doi.org/10.1134/S2070048223020114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223020114

keywords:

Navigation