Skip to main content
Log in

Hybrid Microscale Phantom of Kidney for Monte Carlo Simulation

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Computational modeling of interaction of radiation with human tissue cells plays an important role in medical physics for evaluation of radiation toxicity. Monte Carlo simulation used to implement such a model. 3D phantom of cells must be created and fed to a Monte Carlo software. In this study a 3D voxelized phantom of a kidney cells in a nephron structure created and used in Monte Carlo simulations to assessment of nephrotoxicity. The phantom is fed to GATE Monte Carlo toolkits and simulations were performed to calculate the absorbed dose/energy from source in a range of energy. The dose estimated in subunits of the voxelized and stylized phantoms showed a considerable bias (average of relative differences). The digital phantom showed very significant differences in dose distribution among the cells in different subunits of the nephron. The results demonstrated that a small dissimilarity in size and shape of geometry can lead to a considerable difference in microdosimetry results. The model presented in this study offers a phantom not only concerning realistic geometry of nephron neglected in previous stylized models, but also has the capability to plot the spatial distribution of absorbed dose for any distribution of radiopharmaceuticals in nephron cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Svensson, J. Mölne, E. Forssell-Aronsson, M. Konijnenberg, and P. Bernhardt, “Nephrotoxicity profiles and threshold dose values for [177Lu] – DOTATATE in nude mice,” Nucl. Med. Biol. 39 (6), 756–762 (2012). https://doi.org/10.1016/j.nucmedbio.2012.02.003

    Article  Google Scholar 

  2. B. Lambert, M. Cybulla, S. M. Weiner, C. Van De Wiele, H. Ham, R. A. Dierckx, et al., “Renal toxicity after radionuclide therapy,” Radiat. Res. 161 (5), 607–611 (2004). https://doi.org/10.1667/rr3105

    Article  Google Scholar 

  3. E. Vegt, M. De Jong, J. F. M. Wetzels, R. Masereeuw, M. Melis, W. J. Oyen et al., “Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention,” J. Nucl. Med. 51 (7), 1049–1058 (2010). https://doi.org/10.2967/jnumed.110.075101

    Article  Google Scholar 

  4. A. A. Flynn, R. B. Pedley, A. J. Green, J. L. Dearling, E. El-Emir, GM. Boxer et al., “The nonuniformity of antibody distribution in the kidney and its influence on dosimetry,” Rad. Res. 159 (2), 182–189 (2003). https://doi.org/10.1667/0033-7587(2003)159[0182:tnoadi]2.0.co;2

    Article  Google Scholar 

  5. M. Konijnenberg, M. Melis, R. Valkema, E. Krenning, and M. De Jong, “Radiation dose distribution in human kidneys by octreotides in peptide receptor radionuclide therapy,” J. Nucl. Med. 48 (1), 134–142 (2007).

    Google Scholar 

  6. L. G. Bouchet, W. E. Bolch, H. P. Blanco, B. W. Wessels, J. A. Siegel, D. A. Rajon et al., “MIRD Pamphlet No 19: Absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney,” J. Nucl. Med. 44 (7), 1113–1147 (2003).

    Google Scholar 

  7. M. Borg, T. Hughes, N. Horvath, M. Rice, and A. C. Thomas, “Renal toxicity after total body irradiation,” Int. J. Radiat. Oncol. Biol. Phys. 54 (4), 1165–1173 (2002). https://doi.org/10.1016/s0360-3016(02)03039-0

    Article  Google Scholar 

  8. J. Bergstein, S. P. Andreoli, A. J. Provisor, and M. Yum, “Radiation nephritis following total-body irradiation and cyclophosphamide in preparation for bone marrow transplantation,” Transplantation 41 (1), 63–66 (1986). https://doi.org/10.1097/00007890-198601000-00013

    Article  Google Scholar 

  9. L. C. Stephens, M. E. Robbins, D. A. Johnston, H. D. Thames, R. E. Price, L. J. Peters, et al., “Radiation nephropathy in the rhesus monkey: morphometric analysis of glomerular and tubular alterations,” Int. J. Radiat. Oncol. Biol. Phys. 31 (4), 865–873 (1995). https://doi.org/10.1016/0360-3016(94)00437-4

    Article  Google Scholar 

  10. B. Brans, L. Bodei, F. Giammarile, O. Lindén, M. Luster, W. Oyen, et al., “Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray,” Eur. J. Nucl. Med. Mol. Imaging 34 (5), 772–786 (2007). https://doi.org/10.1007/s00259-006-0338-5

    Article  Google Scholar 

  11. L. Bodei, M. Cremonesi, M. Ferrari, M. Pacifici, C. M. Grana, M. Bartolomei et al., “Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors,” Eur. J. Nucl. Med. Mol. Imaging 35 (10), 1847–1856 (2008). https://doi.org/10.1007/s00259-008-0778-1

    Article  Google Scholar 

  12. R. Valkema, S. A. Pauwels, L. K. Kvols, D. J. Kwekkeboom, et al., “Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate,” J. Nucl. Med. 46 (Supl. 1), 83S–91S (2005).

    Google Scholar 

  13. H. Bergsma, M. W. Konijnenberg, W. A. van der Zwan, B. L. R. Kam, J. J. M. Teunissen, P. P. Kooij, et al., “Nephrotoxicity after PRRT with 177Lu-DOTA-octreotate,” Eur. J. Nucl. Med. Mol. Imaging 43 (10), 1802–1811 (2016). https://doi.org/10.1007/s00259-016-3382-9

    Article  Google Scholar 

  14. J. R. Cassady, “Clinical radiation nephropathy,” Int. J. Radiat. Oncol. Biol. Phys. 31 (5), 1249–1256 (1995). https://doi.org/10.1016/0360-3016(94)00428-N

    Article  Google Scholar 

  15. A. Bertolet, M. Cortés-Giraldo, and A. Carabe-Fernandeza, “An analytical microdosimetric model for radioimmunotherapeutic alpha emitters,” J. Radiat. Res. 194 (4), 403–410 (2020). https://doi.org/10.1667/rade-20-00045.1

    Article  Google Scholar 

  16. O. P. Joneja, C. Negreanu, J. Stepanek, and R. Chawla, “Comparison of Monte Carlo simulations of photon/electron dosimetry in microscale applications,” Aust. Phys. Eng. Sci. Med. 26 (2), 63–69 (2003).

    Article  Google Scholar 

  17. B. Seniwal, M. A. Bernal, and T. C. F. Fonseca, “Microdosimetric calculations for radionuclides emitting β and α particles and Auger electrons,” Appl. Radiat. Isot. 166, 109302 (2020). https://doi.org/10.1016/j.apradiso.2020.109302

    Article  Google Scholar 

  18. R. F. Hobbs, H. Song, D. L. Huso, M. H. Sundel, and G. Sgouros, “A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry,” Phys. Med. Biol. 57 (13), 4403–4424 (2012). https://doi.org/10.1088/0031-9155/57/13/4403

    Article  Google Scholar 

  19. D. Sarrut, M. Bardiès, N. Boussion, N. Freud, S. Jan S, J.-M. Létang, et al., “A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications,” Med. Phys. 41 (6, Part 1), 064301 (2014). https://doi.org/10.1118/1.4871617

    Article  Google Scholar 

  20. A. A. Parach, H. Rajabi, and M. A. Askari, “Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code,” Radiat. Environ. Biophys. 50 (3), 441–450 (2011). https://doi.org/10.1007/s00411-011-0370-0

    Article  Google Scholar 

  21. C. O. Thiam, V. Breton, D. Donnarieix, B. Habib, and L. Maigne, “Validation of a dose deposited by low-energy photons using GATE/GEANT4,” Phys. Med. Biol. 53 (11), 3039–3055 (2008). https://doi.org/10.1088/0031-9155/53/11/019

    Article  Google Scholar 

  22. D. Villoing, S. Marcatili, M.-P. Garcia, and M. Bardiès, “Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model,” Phys. Med. Biol. 62 (5), 1885–1904 (2017). https://doi.org/10.1088/1361-6560/62/5/1885

    Article  Google Scholar 

  23. D. E. Cullen, J. H. Hubbell, and L. Kissel, “EPDL97: the evaluated photo data library, ’97 version,” UCRL-50400, Vol. 6, Rev. 5 (Lawrence Livermore National Lab., University of California, Livermore, CA, 1997). https://doi.org/10.2172/295438

  24. S. T. Perkins and D. E. Cullen, “ENDL type formats for the LLNL evaluated atomic data library, EADL, for the evaluated electron data library, EEDL, and for the evaluated photon data library, EPDL,” Report IA-EA-NDS–159 (International Atomic Energy Agency, Vienna, 1994).

  25. S. Incerti, B. Suerfu, J. Xu, V. Ivantchenko, A. Mantero, J. M. C. Brown, et al., “Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. B 372, 91–101 (2016). https://doi.org/10.1016/j.nimb.2016.02.005

    Article  Google Scholar 

  26. S. T. Perkins, D. E. Cullen, and S. M. Seltzer, “Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z= 1−100,” UCRL-50400, Vol. 31 (Lawrence Livermore National Lab., University of California, Livermore, CA, 1991). https://doi.org/10.2172/5691165

  27. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, et al., “GEANT4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506 (3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

  28. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, et al., “Recent developments in Geant4,” Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186–225 (2016). https://doi.org/10.1016/j.nima.2016.06.125

  29. D. Lattuada, D. L. Balabanski, S. Chesnevskaya, M. Costa, V. Crucillà, G. L. Guardo, et al., “A fast and complete GEANT4 and ROOT Object-Oriented Toolkit: GROOT,” EPJ Web Conf. 165, 01034 (2017). https://doi.org/10.1051/epjconf/201716501034

  30. S. M. Goddu (Ed.), R. W. Howell, L. G. Bouchet, W. E. Bolch, and D. V. Rao, MIRD Cellular S Values: Self-Absorbed Dose Per Unit Cumulated Activity for Selected Radionuclides and Monoenergetic Electron and Alpha Particle Emitters Incorporated into Different Cell Compartments (Society of Nuclear Medicine, Reston, 1997).

    Google Scholar 

  31. S. Zein, Z. Francis, G. Montarou, F. Chandez, M. Kane, and A. Chevrollier, “Microdosimetry in 3D realistic mitochondria phantoms: Geant4 Monte Carlo tracking of 250 keV photons in phantoms reconstructed from microscopic images,” Phys. Med. 42, 7–12 (2017). https://doi.org/10.1016/j.ejmp.2017.08.005

    Article  Google Scholar 

  32. Y. Wang, Z. Li, A. Zhang, P. Gu, F. Li, X. Li, et al., “Microdosimetric calculations by simulating monoenergetic electrons in voxel models of human normal individual cells,” Radiat. Phys. 166, 108518 (2020). https://doi.org/10.1016/j.radphyschem.2019.108518

    Article  Google Scholar 

  33. J. Bordes, S. Incerti, E. Mora-Ramirez, J. Tranel, C. Rossi, C. Bezombes, et al., “Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy,” Med. Phys. 47 (10), 5222–5234 (2020). https://doi.org/10.1002/mp.14370

    Article  Google Scholar 

  34. S. M. Goddu (Ed.), R. W. Howell, L. G. Bouchet, W. E. Bolch, and D. V. Rao, MIRD Cellular S Values (Society of Nuclear Medicine, Reston, 1997).

    Google Scholar 

  35. A. I. Rubenstone and L. B. Fitch, “Radiation nephritis. A clinicopathologic study,” Am. J. Med. 33 (4), 545–554 (1962). https://doi.org/10.1016/0002-9343(62)90265-6

    Article  Google Scholar 

  36. T. Blanc, N. Goudin, M. Zaidan, M. G. Traore, F. Bienaime, L. Turinsky, et al., “Three-dimensional architecture of nephrons in the normal and cystic kidney,” Kidney Int. 99 (3), 632–645 (2021). https://doi.org/10.1016/j.kint.2020.09.032

    Article  Google Scholar 

  37. R. L. Jamison, J. Buerkert, and F. Lacy, “A microstructure study of Henle’s thin loop in Brattleboro rats,” Am. J. Physiol. 224 (1), 180–185 (1973). https://doi.org/10.1152/ajplegacy.1973.224.1.180

    Article  Google Scholar 

  38. G. Tamborino, M. De Saint-Hubert, L. Struelens, D. C. Seoane, E. A. M. Ruigrok, A. Aerts, et al., “Cellular dosimetry of [177 Lu]Lu-DOTA-[Tyr 3]octreotate radionuclide therapy: the impact of modeling assumptions on the correlation with in vitro cytotoxicity,” EJNMMI Phys. 7 (1), 8 (2020). https://doi.org/10.1186/s40658-020-0276-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Jabbary.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbary, M. Hybrid Microscale Phantom of Kidney for Monte Carlo Simulation. Math Models Comput Simul 14, 1032–1043 (2022). https://doi.org/10.1134/S2070048222060102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048222060102

Keywords:

Navigation