Skip to main content
Log in

On Modeling Sources of Radiation-Induced Effects in Heterogeneous Materials

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

An approach to calculate the initial data for computer simulation of radiation-induced secondary effects in a heterogeneous medium is considered. A method for solving the problem of integration “according to the data” of the results of modeling cascade processes of radiation transfer and processes of generation of secondary radiation-induced effects is proposed. The method is based on a multidimensional approximation of the results of the statistical modeling of the interaction of radiation with matter on a difference mesh designed for the numerical solution of the equations of electro- and thermodynamics. The approximation is built using neural network technology. The geometric model of a heterogeneous medium is based on the Stillinger–Lubachevsky algorithms for multimodal structures. The results of demonstration calculations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. I. Popov, Descent Vehicles (Znanie, Moscow, 1985) [in Russian].

    Google Scholar 

  2. I. P. Bezrodnykh, A. P. Tiutnev, and V. T. Semenov, Radiation Effects in Space. Part 2. Space-Radiation Effect on Electrical Engineering Materials (VNIIEM Corporation, Moscow, 2016) [in Russian].

  3. M. Bruzzi, H. F.-W. Sadrozinski, and A. Seiden, “Comparing radiation tolerant materials and devices for ultra rad-hard tracking detectors,” Nucl. Instrum. Methods Phys. Res. A 579 (2), 754–761 (2007). https://doi.org/10.1016/j.nima.2007.05.326

    Article  Google Scholar 

  4. A. V. Berezin, Yu. A. Volkov, M. B. Markov, and I. A. Tarakanov, “The radiation-induced conductivity of silicon,” Math. Montisnigri 33, 69–87 (2015). https://www.montis.pmf.ac.me/vol33/5.pdf.

  5. F. N. Voronin, K. K. Inozemtseva, and M. B. Markov, “Electromagnetic and thermomechanical effect produced by an electronic beam on a solid barrier,” Math. Models Comput. Simul. 10 (4), 407–417 (2018). https://doi.org/10.1134/S2070048218040154

    Article  MathSciNet  Google Scholar 

  6. M. E. Zhukovskiy, M. B. Markov, R. V. Uskov, “Modeling of radiation-induced electric current in the materials of finely dispersed structure,” Math. Montisnigri 47, 65–74 (2020). https://doi.org/10.20948/mathmontis-2020-47-6

    Article  Google Scholar 

  7. M. E. Zhukovskiy, R. V. Uskov, E. B. Savenkov, M. V. Alekseev, M. B. Markov, and F. N. Voronin, “Model for the radiation transport in the matter of porous-type heterogeneous materials,” Math. Models Comput. Simul. 11 (4), 415–425 (2019). https://doi.org/10.1134 /S2070048219030177.

    Article  MathSciNet  Google Scholar 

  8. V. A. Egorova, F. N. Voronin, M. E. Zhukovskiy, M. B. Markov, A. I. Potapenko, R. V. Uskov, and D. S. Boykov, “Model of radiation-induced thermomechanical effects in heterogeneous finely dispersed materials,” Math. Models Comput. Simul. 12 (5), 729–739 (2020). https://doi.org/10.1134/S2070048220050063

    Article  MathSciNet  Google Scholar 

  9. T. Mitchell, Machine Learning (McGraw-Hill, New York, 1997).

    MATH  Google Scholar 

  10. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 1999).

    MATH  Google Scholar 

  11. M. Zhukovskiy, M. Markov, S. Podolyako, R. Uskov, C. Bellon, and G.-R. Jaenisch, “Supercomputing the cascade processes of radiation transport,” in 19th World Conf. on NonDestructive Testing (WCNDT 2016), 13–17 June 2016, Munich, Germany, e-J. NDT.net, Issue 2016-07 (2016). http://www.ndt.net/article/wcndt2016/papers/p49.pdf.

  12. M. E. Zhukovskiy and R. V. Uskov, “Hybrid parallelization of the algorithms of radiation cascade transport modeling,” Math. Models Comput. Simul. 7 (6), 601–610 (2015). https://doi.org/10.1134/S2070048215060101

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, “Packing hyperspheres in high dimensional Euclidean spaces,” Phys. Rev. E 74 (4), 041127 (2006). https://doi.org/10.1103/PhysRevE.74.041127

    Article  MathSciNet  Google Scholar 

  14. M. V. Alekseev, V. A. Egorova, F. N. Voronin et al., “On modeling of the radiation-induced thermo-mechanical effects in heterogeneous materials of complex dispersion structure,” KIAM Preprint No. 32 (Keldysh Inst. Appl. Math. RAS, Moscow, 2019) [in Russian]. https://doi.org/10.20948/prepr-2019-32.

  15. M. E. Zhukovskii and R. V. Uskov, “Mathematical modeling of radiative electron emission using hybrid supercomputers,” Vychisl. Metody Program. 13 (1), 271–279 (2012). http://mi.mathnet.ru/vmp29.

  16. V. P. Efremov and A. I. Potapenko, “Thermomechanical processes of composite materials under the action of intense energy fluxes,” High Temp. 48 (6), 6, 881–886 (2010). https://doi.org/10.1134/S0018151X10060155

    Article  Google Scholar 

  17. A. V. Berezin, D. A. Zhukov, M. E. Zhukovskii, V. V. Koniukhov, V. I. Krainiukov, M. B. Markov, Yu. V. Po-mazan, and A. I. Potapenko, “Modeling the electromagnetic effects in complex structures exposed to pulse radiation,” Mat. Model. Chislennye Metody, No. 6, 58–72 (2015). http://mi.mathnet.ru/mmcm43.

  18. M. Zhukovskiy, S. Podoliako, G.-R. Jaenisch, C. Bellon, and V. Samadurau, “Monte Carlo simulation tool with CAD interface,” Rev. Prog. Quant. Nondestr. Eval. 25 [AIP Conf. Proc. 820], 574–581 (2006). https://doi.org/10.1063/1.2184579.

  19. A. V. Berezin, A. S. Vorontsov, M. E. Zhukovskiy, et al., “Particle method for electrons in a scattering medium,” Comput. Math. Math. Phys. 55 (9), 1534–1546 (2015). https://doi.org/10.1134/S0965542515090055

    Article  MathSciNet  MATH  Google Scholar 

  20. V. A. Gasilov, A. S. Boldarev, S. V. D’yachenko, O. G. Olkhovskaya, E. L. Kartasheva, S. N. Boldyrev, G. A. Bagdasarov, I. V. Gasilova, M. S. Boyarov, and V. A. Shmyrov, “Program package MARPLE3D for simulation of pulsed magnetically driven plasma using high performance computing,” Mat. Model. 24 (1), 55–87 (2012).

    MATH  Google Scholar 

  21. A. V. Berezin, A. A. Kryukov, and B. D. Plyushchenkov, “The method of electromagnetic field with the given wavefront calculation,” Mat. Model. 23 (3), 109–126 (2011).

    MathSciNet  MATH  Google Scholar 

  22. A. N. Andrianov, A. V. Berezin, A. S. Vorontsov, K. N. Efimkin, and M. B. Markov, “The radiational electromagnetic fields modeling at the multiprocessor computing systems,” Mat. Model. 20 (3), 98–114 (2008).

    MATH  Google Scholar 

  23. V. A. Gasilov, I. V. Gasilova, L. V. Klochkova et al., “Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates,” Comput. Math. Math. Phys. 55 (8), 1310–1323 (2015). https://doi.org/10.1134/S0965542515080114

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Egorova and M. Zhukovskiy, “Handling of the radiative electron emission modeling results by use of the neural networks,” Math. Montisnigri 38, 89–99 (2017). https://www.montis.pmf.ac.me/vol38/6.pdf.

  25. T. Mitchell, Machine Learning (McGraw-Hill, New York, 1997).

    MATH  Google Scholar 

  26. K. V. Vorontsov, Mathematical Methods of Case-Based Learning (Machine Learning Theory). http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf.

  27. F. P. Vasil’ev, Optimization Methods (Faktorial Press, Moscow, 2002) [in Russian].

    Google Scholar 

  28. S. Osowski, Neural Networks for Information Processing (Finansy i Statistika, Moscow, 2002) [in Russian]; transl. from Polish: Sieci Neuronowe do Przetwarzania Informacji (Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2000).

  29. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, New York, 2006).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Zhukovskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soboleva, V.A., Zhukovskiy, M.E. On Modeling Sources of Radiation-Induced Effects in Heterogeneous Materials. Math Models Comput Simul 14, 829–836 (2022). https://doi.org/10.1134/S2070048222050143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048222050143

Keywords:

Navigation