Skip to main content
Log in

Calculation Block of the Solar Radiation Field in the General Circulation Model of the Lower and Middle Atmosphere of the Earth

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The methods for calculating the solar radiation field in the radiation block of the general circulation model of the Earth’s lower and middle atmosphere are described. These calculations use a new parametrization of molecular absorption in the frequency range from 2000 to 50  000 cm–1 in the range of heights from the Earth’s surface up to 100 km. The parametrization takes into account the change in the gas composition of the atmosphere with altitude and the violation of the local thermodynamic equilibrium in the vibrational bands of carbon dioxide with a wavelength of about 4.3 and 2.7 μm at altitudes above 70 km. The method of discrete ordinates is used for the numerical solution of the radiative transfer equation. The results of calculations performed using the radiation block of the model are compared with the results of the reference calculations of the solar radiation field in the lower and middle atmosphere of the Earth, performed with a very high frequency resolution. It is shown that the model block provides good calculation accuracy both in the absence of clouds and in the presence of cloud layers with a large optical thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2003; Cambridge International Science, Cambridge, 2005).

  2. I. V. Mingalev, N. M. Astaf’eva, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, and O. V. Mingalev, “Numerical simulation of formation of cyclone vortex flows in the intratropical zone of convergence and their early detection,” Cosmic Res. 50 (3), 233–248 (2012). https://doi.org/10.1134/S0010952512020062

    Article  Google Scholar 

  3. B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, and O. V. Mingalev, “Gas-dynamic general circulation model of the lower and middle atmosphere of the Earth,” Math. Models Comput. Simul. 10 (2), 176–185 (2018). https://doi.org/10.1134/S2070048218020047

    Article  MathSciNet  MATH  Google Scholar 

  4. B. N. Chetverushkin, I. V. Mingalev, E. A. Fedotova, K. G. Orlov, V. M. Chechetkin, and V. S. Mingalev, “Calculating the natural atmospheric radiation using the general circulation model of the Earth’s lower and middle atmosphere,” Math. Models Comput. Simul. 12 (5), 803–815 (2020). https://doi.org/10.1134/S207004822005004X

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  6. K. Ya. Kondrat’ev, Actinometry (Gidrometeoizdat, Leningrad, 1965) [in Russian].

    Google Scholar 

  7. K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, New York, 1980; Gidrometeoizdat, Leningrad, 1984).

  8. T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Lab. Znanii, Moscow, 2006) [in Russian].

    Google Scholar 

  9. S. D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equations,” Atmos. Oceanic Opt. 12 (9), 730–734 (1999).

    Google Scholar 

  10. S. D. Tvorogov and O. B. Rodimova, “Calculation of transmission functions at small pressures,” Atmos. Oceanic Opt. 21 (11), 797–803 (2008).

    Google Scholar 

  11. B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giv-ing the k-distribution with minimum number of terms,” Atmos. Oceanic Opt. 16 (3), 244–246 (2003).

    Google Scholar 

  12. B. Fomin and M. de Paula Corrêa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave,” J. Geophys. Res.: Atmos. 110 (D2), D02106 (2005). https://doi.org/10.1029/2004JD005163

    Article  Google Scholar 

  13. J. M. Edwards and A. Slingo, “Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model,” Q. J. R. Meteorol. Soc. 122 (531), 689–719 (1996). https://doi.org/10.1002/QJ.49712253107

    Article  Google Scholar 

  14. M.-D. Chou and M. J. Suarez, “A solar radiation parameterization for atmospheric studies,” NASA/TM-1999-104606, in Technical Report Series on Global Modeling and Data Assimilation, Vol. 15 (NASA Goddard Space Flight Center, Greenbelt, MD, 1999). https://ntrs.nasa.gov/citations/19990060930

    Google Scholar 

  15. S. Cusack, J. M. Edwards, and J. M. Crowther, “Investigating k distribution methods for parametrizing gaseous absorption in the Hadley Centre Climate Model,” J. Geophys. Res.: Atmos. 104 (D2), 2051–2057 (1999). https://doi.org/10.1029/1998JD200063

    Article  Google Scholar 

  16. T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, “Modeling of the radiation process in an atmospheric general circulation model,” Appl. Opt. 39 (27), 4869–4878 (2000). https://doi.org/10.1364/AO.39.004869

    Article  Google Scholar 

  17. R. J. Hogan, “The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function,” J. Atmos. Sci. 67 (6), 2086–2100 (2010). https://doi.org/10.1175/2010JAS3202.1

    Article  Google Scholar 

  18. B. N. Chetverushkin, Mathematical Modeling of Problems of Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  19. V. Ya. Gol’din and B. N. Chetverushkin, “Methods of solving one-dimensional problems of radiation gas dynamics,” USSR Comput. Math. Math. Phys. 12 (4), 177–189 (1972). https://doi.org/10.1016/0041-5553(72)90122-X

    Article  MathSciNet  Google Scholar 

  20. A. V. Shilkov and M. N. Gerthev, “Verification of the Lebesgue averaging method,” Math. Models Comput. Simul. 8 (2), 93–107 (2016). https://doi.org/10.1134/S2070048216020125

    Article  MathSciNet  Google Scholar 

  21. E. N. Aristova, M. N. Gertsev, and A. V. Shilkov, “Lebesgue averaging method in serial computations of atmospheric radiation,” Comput. Math. Math. Phys. 57 (6), 1022–1035 (2017). https://doi.org/10.1134/S0965542517060045

    Article  MathSciNet  MATH  Google Scholar 

  22. I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth’s lower and middle atmosphere,” Atmos. Oceanic Opt. 31 (6), 582–589 (2018). https://doi.org/10.1134/S102485601901010X

    Article  Google Scholar 

  23. M. López-Puertas and F. W. Taylor, Non-LTE Radiative Transfer in the Atmosphere, in Series on Atmospheric, Oceanic and Planetary Physics, Vol. 3 (World Scientific, Singapore, 2001). https://doi.org/10.1142/4650

  24. G. M. Shved, Introduction to the Dynamics and Energetics of the Atmosphere (Izd. S.-Peterb. Gos. Univ., St. P-etersburg, 2020) [in Russian].

    Google Scholar 

  25. G. M. Shved and A. O. Semenov, “The standard problem of nonlocal thermodynamic equilibrium radiative transfer in the rovibrational band of the planetary atmosphere,” Solar Syst. Res. 35 (3), 212–226 (2001). https://doi.org/10.1023/A:1010478906172

    Article  Google Scholar 

  26. M. López-Puertas, R. Rodrigo, A. Molina, and F. W. Taylor, “A non-LTE radiative transfer model for infrared bands in the middle atmosphere. I. Theoretical basis and application to CO2 15 μm bands,” J. Atmos. Terr. Phys. 48 (8), 729–748 (1986). https://doi.org/10.1016/0021-9169(86)90022-X

    Article  Google Scholar 

  27. M. López-Puertas, R. Rodrigo, J. J. López-Moreno, and F. W. Taylor, “A non-LTE radiative transfer model for infrared bands in the middle atmosphere. II. CO2 (2.7 and 4.3 μm) and water vapour (6.3 μm) bands and N2(1) and O2(1) vibrational levels,” J. Atmos. Terr. Phys. 48 (8), 749–764 (1986). https://doi.org/10.1016/0021-9169(86)90023-1

    Article  Google Scholar 

  28. M. López-Puertas, G. Zaragoza, M. Á. López-Valverde, and F. W. Taylor, “Non local thermodynamic equilibrium (LTE) atmospheric limb emission at 4.6 μm: I. An update of the CO2 non-LTE radiative transfer model,” J. Geoph. Res.: Atmos. 103 (D7), 8499– 8513 (1998). https://doi.org/10.1029/98JD00209

    Article  Google Scholar 

  29. V. P. Ogibalov, V. I. Fomichev, and A. A. Kutepov, “Radiative heating effected by infrared CO2 bands in the middle and upper atmosphere,” Izv.—Atmos. Oceanic Phys. 36 (4), 454−464 (2000).

    Google Scholar 

  30. H. Nebel, P. P. Wintersteiner, R. H. Picard, J. R. Winick, and R. D. Sharma, “CO2 non-local thermodynamic equilibrium radiative excitation and infrared dayglow at 4.3 μm: Application to Spectral Infrared Rocket Experiment data,” J. Geophys. Res.: Atmos. 99 (D5), 10409–10419 (1994). https://doi.org/10.1029/94JD00315

    Article  Google Scholar 

  31. V. P. Ogibalov, A. A. Kutepov, and G. M. Shved, “Non-local thermodynamic equilibrium in CO2 in the middle atmosphere: II. Populations of the ν1 ν2 mode manifold states,” J. Atmos. Solar-Terr. Phys. 60 (3), 315–329 (1998). https://doi.org/10.1016/S1364-6826(97)00077-1

    Article  Google Scholar 

  32. V. P. Ogibalov, “The CO2 non-LTE problem taking account of the multiquantum transitions on the ν2-mode during CO2−O collisions,” Phys. Chem. Earth, Part B 25 (5–6), 493–499 (2000). https://doi.org/10.1016/S1464-1909(00)00051-4

    Article  Google Scholar 

  33. V. P. Ogibalov and G. M. Shved, “Non-local thermodynamic equilibrium in CO2 in the middle atmosphere: III. Simplified models for the set of vibrational states,” J. Atmos. Solar-Terr. Phys. 64 (4), 389–396 (2002). https://doi.org/10.1016/S1364-6826(01)00113-4

    Article  Google Scholar 

  34. I. V. Mingalev, K. G. Orlov, and E. A. Fedotova, “Allowing for local thermodynamic non-equilibrium in the vibrational bands of carbon dioxide molecules in the radiation block of the model of the general circulation of Earth’s atmosphere,” Bull. Russ. Acad. Sci.: Phys. 85 (3), 282–286 (2021). https://doi.org/10.3103/S1062873821030175

    Article  MathSciNet  Google Scholar 

  35. L. S. Rothman, I. E. Gordon, Y. Babikov, et al., “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013). https://doi.org/10.1016/j.jqsrt.2013.07.002

    Article  Google Scholar 

  36. E. J. Mlawer, V. H. Payne, J.-L. Moncet, et al., “Development and recent evaluation of the MT_CKD model of continuum absorption,” Philos. Trans. R. Soc., A 370 (1968), 2520–2556 (2012). https://doi.org/10.1098/rsta.2011.0295

  37. N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, and E. A. Fedotova, “A new version of the discrete ordinate method for the calculation of the intrinsic radiation in horizontally homogeneous atmospheres,” Comput. Math. Math. Phys. 55 (10), 1713–1726 (2015). https://doi.org/10.1134/S0965542515100103

    Article  MathSciNet  MATH  Google Scholar 

  38. I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “The effect of optically thick cloud layers on heating of the atmosphere self emission at mid-latitudes,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 14 (5), 100–108 (2017). https://doi.org/10.21046/2070-7401-2017-14-5-259-267

  39. R. A. McClatchey, H.-J. Bolle, K. Ya. Kondratyev, et al., “A preliminary cloudless standard atmosphere for r-adiation computation,” Report WCP–112, WMO/TD-No. 24, World Climate Research Programme, Int. A-ssociation for Meteorology and Atmospheric Physics, Radiation Commission (Boulder, CO, USA, 1986).

  40. V. A. Gasilov, P. A. Kuchugov, O. G. Olkhovskaya, and B. N. Chetverushkin, “Solution of the self-adjoint r-adiative transfer equation on hybrid computer systems,” Comput. Math. Math. Phys. 56 (6), 987–995 (2016). https://doi.org/10.1134/S0965542516060130

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mingalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverushkin, B.N., Mingalev, I.V., Fedotova, E.A. et al. Calculation Block of the Solar Radiation Field in the General Circulation Model of the Lower and Middle Atmosphere of the Earth. Math Models Comput Simul 14, 783–798 (2022). https://doi.org/10.1134/S2070048222050040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048222050040

Keywords:

Navigation