Skip to main content
Log in

Two-Dimensional Model for Calculation of the Working Process of a Spark-Ignited Engine

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A two-dimensional model of the working process—the preliminary analysis of calculations (PAC)—is developed for the preliminary planning of three-dimensional numerical calculations of the working process in spark-ignited engines. The model is based on solving the energy conservation equation in partial derivatives based on the control volume method with explicit identification of the flame front. A new approach to modeling flame propagation in a spark-ignited engine is proposed, which consists of a combination of the mesh method of control volumes and the calculation of the apparent flame velocity based on the experimental data (taking into account the stage of development of the flame source). In this case, there is no need to solve the momentum transfer equation and gas mixture components to determine the current position of the flame front. Thus, the advantages of this model are the fast execution of the calculation and good predictive ability. Additionally, the program can be used for preliminary verification of three-dimensional calculations when experimental data are not available, as well as for obtaining the heat release characteristics for zero-dimensional (thermodynamic) models of the working process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Grundlagen Verbrennungsmotoren: Simulation der Gemischbildung, Verbrennung, Schadstoffbildung und Aufladung. Praxis, Ed. by G. P. Merker and C. Schwarz (Vieweg + Teubner, Wiesbaden, 2012).

  2. R. Pischinger, M. Klell, and T. Sams, Thermodynamik der VerbrennungskraftmaschineDer Fahrzeugantrieb (Springer, Wien, 2002).

    Book  Google Scholar 

  3. R. Basshuesen and F. Schäfer, Handbuch. Verbrennungsmotor (Vieweg & Sohn, Wiesbaden, 2007).

  4. F. Perini, F. Paltrinieri, and E. Mattarelli, “A quasi-dimensional combustion model for performance and emissions of SI engines running on hydrogen–methane blends,” Int. J. Hydrogen Energy 35 (10), 4687–4701 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.083

    Article  Google Scholar 

  5. Z. Liu and R. Chen, “A zero-dimensional combustion model with reduced kinetics for SI engine knock simulation,” Combust. Sci. Technol. 181 (6), 828–852 (2009). https://doi.org/10.1080/00102200902864704

    Article  Google Scholar 

  6. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980; Energoatomizdat, Moscow, 1984).

  7. B. Enaux, V. Granet, O. Vermorel, C. Lacour, C. Pera, C. Angelberger, and T. Poinsot, “LES study of cycle-to-cycle variations in a spark ignition engine,” Proc. Combust. Inst. 33 (2), 3115–3122 (2011). https://doi.org/10.1016/j.proci.2010.07.038

    Article  Google Scholar 

  8. A. S. Sokolik, Self-Ignition, Flame, and Detonation in Gases (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    MATH  Google Scholar 

  9. Ya. B. Zeldovich, G. I. Barenblat, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Nauka, Moscow, 1980; Consultants Bureau / Plenum, New York, 1985).

  10. S. M. Frolov, V. S. Ivanov, B. Basara, and M. Suffa Poinsot, “Numerical simulation of flame propagation and localized preflame autoignition in enclosures,” J. Loss Prev. Process Ind. 26 (2), 302–309 (2013). https://doi.org/10.1016/j.jlp.2011.09.007

    Article  Google Scholar 

  11. C. Huang, E. Yasari, L. C. R. Johansen, S. Hemdal, and A. N. Lipatnikov, “Application of flame speed closure model to RANS simulations of stratified turbulent combustion in a gasoline direct-injection spark-ignition engine,” Combust. Sci. Technol. 188 (1), 98–131 (2016). https://doi.org/10.1080/00102202.2015.1083988

    Article  Google Scholar 

  12. G. Woschni, “A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine,” SAE Technical Paper 670931 (1967). https://doi.org/10.4271/670931

  13. R. Z. Kavtaradze, Local Heat Transfer in Piston Engines (Mosk. Gos. Tech. Univ. im. N. E. Baumana, Moscow, 2007) [in Russian].

  14. B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flow,” Comput. Methods Appl. Mech. Eng. 3 (2), 269–289 (1974). https://doi.org/10.1016/0045-7825(74)90029-2

    Article  MATH  Google Scholar 

  15. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGrawHill, New York, 1977; Khimiya, Leningrad, 1982).

  16. S. V. Patankar, Computation of Conduction and Duct Flow Heat Transfer (Innovative Research, Maple Grove, MN, 1991; Izd. MEI, Moscow, 2003).

  17. http://numpy.scipy.org.

  18. B. J. McBride, M. J. Zehe, and S. Gordon, “NASA Glenn coefficients for calculating thermodynamic properties of individual species,” Technical Report No. NASA/TP–2002-211556 (NASA, Glenn Research Center, Cleveland, OH, 2002).

  19. N. Chindaprasert, Thermodynamic Based Prediction Model for NOx and CO Emissions from a Gasoline Direct Injection Engine, Doktor-Ingenieur (Dr.-Ing.) Dissertation (Universität Rostock, 2007). https://doi.org/10.18453/rosdok_id00000329.

  20. A. Kaden, R. Klumpp, and C. Enderle, “Analyse der Restgasverträglichkeit beim Ottomotor–Ergänzung der Verbrennungsdiagnostik durch die 3D-Motorprozessberechnung,” in 6. Internationales Symposium für Verbrennungsdiagnostik (Baden-Baden, 2002), pp. 57–67.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Sergeev.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, S.S. Two-Dimensional Model for Calculation of the Working Process of a Spark-Ignited Engine. Math Models Comput Simul 14, 559–566 (2022). https://doi.org/10.1134/S207004822204010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004822204010X

Keywords:

Navigation