Abstract
This paper presents an analysis of the level of description of the main physical processes in the Earth’s atmosphere in modern models of the general circulation of the Earth’s atmosphere and gives a brief overview of the modern models used by the main forecasting centers. The promising directions of the development of models of the general circulation of the Earth’s atmosphere are discussed.
This is a preview of subscription content,
to check access.Similar content being viewed by others
REFERENCES
A. S. Monin, Theoretical Foundations of Geophysical Hydrodynamics (Leningrad, Gidrometeoizdat, 1988) [in Russian]; English translation: Theoretical Geophysical Fluid Dynamics (Springer, Dordrecht, 1990).
M. A. Tolstykh, R. A. Ibraev, E. M. Volodin, K. V. Ushakov, V. V. Kalmykov, A.V. Shlyaeva, V. G. Mizyak, and R. N. Habeev, Models of the Global Atmosphere and the World Ocean: Algorithms and Supercomputer Technologies (Izd. Mosk. Gos. Univ., Moscow, 2013) [in Russian].
H. Wan, M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski, L. Bonaventura, K. Fröhlich, D. Reinert, P. Rípodas, L. Kornblueh, and J. Förstner, “The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids–Part 1: Formulation and performance of the baseline version,” Geosci. Model Dev. 6 (3), p.735–763 (2013).
G. Zängl, D. Reinert, P. Rípodas, and M. Baldauf, “The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core,” Q. J. R. Meteorol. Soc. 141 (687), 563–579 (2015).
J. M. Dennis, M. Vertenstein, P. H. Worley, A. A. Mirin, A. P. Craig, R. Jacob, and S. Mickelson, “Computational performance of ultra-high-resolution capability in the community earth system model,” Int. J. High Perform. Comput. Appl. 26 (1), 5–16 (2012).
Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Technical Note NCAR/TN-486+STR (National Center for Atmospheric Research, Boulder, CO, 2010). http://www.cesm.ucar.edu/models/cesm1.2/cam/docs/description/cam5_desc.pdf.
L. J. Donner, B. L. Wyman, R. S. Hemler, L. W. Horowitz, Y. Ming, M. Zhao, J.-C. Golaz, P. Ginoux, S.-J. Lin, M. D. Schwarzkopf et al., “The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3,” J. Clim. 24 (13), 3484–3519 (2011).
A. Qaddouri and V. Lee, “The Canadian Global Environmental Multiscale model on the Yin-Yang grid system,” Q. J. R. Meteorol. Soc. 137 (660), 1913–1926 (2011).
Next Generation Global Prediction System (NGGPS). http://www.nws.noaa.gov/ost/nggps.
A. Gassmann, “A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency,” Q. J. R. Meteorol. Soc. 139 (670), 152–175 (2013).
D. Salmond and M. Hamrud, “IFS scalability and computational efficiency,” in 14th ECMWF Workshop on the Use of High Performance Computing in Meteorology (Reading, UK, 1–5 November 2010). https://www.ecmwf.int/sites/default/files/elibrary/2010/15058-ifs-scalability-and-computational-efficiency.pdf.
W. C. Skamarock, Global Atmospheric Solvers for Next-Generation Weather and Climate Models. http://www2.mmm.ucar.edu/projects/global_cores/global_core.html.
M. L. Yu, F. X. Giraldo, M. Peng, and Z. J. Wang, “Localized artificial viscosity stabilization of discontinuous Galerkin methods for nonhydrostatic mesoscale atmospheric modeling,” Mon. Weather Rev. 143 (12), 4823–4845 (2015).
J. Thuburn and C. J. Cotter, “A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes,” J. Comput. Phys. 290, 274–297 (2015).
M. Taylor, J. Tribbia, and M. Iskandarani, “The spectral element method for the shallow water equations on the sphere,” J. Comput. Phys. 130 (1), 92–108 (1997).
R. D. Nair, H.-W. Choi, and H. M. Tufo, “Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core,” Comput. Fluids 38 (2), 309–319 (2009).
J. M. Dennis, M. Vertenstein, P. H. Worley, A. A. Mirin, A. P. Craig, R. Jacob, and S. Mickelson, “Computational performance of ultra-high-resolution capability in the community earth system model,” Int. J. High Perform. Comput. Appl. 26 (1), 5–16 (2012).
I. Bašták Ďurán, J.-F. Geleyn, and F.A. Váňa, “A compact model for the stability dependency of TKE production–destruction–conversion terms valid for the whole range of Richardson numbers,” J. Atmos. Sci. 71 (8), 3004–3026 (2014).
P. M. M. Soares, P. M. A. Miranda, A. P. Siebesma, and J. Teixeira, “An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection,” Q. J. R. Meteorol. Soc. 130 (604), 3365–3384 (2004).
A. Staniforth and J. Côté, “Semi-Lagrangian integration schemes for atmospheric models — A review,” Mon. Weather Rev. 119 (9), 2206–2223 (1991).
B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov et al., “Gas-dynamic general circulation model of the lower and middle atmosphere of the Earth,” Math. Models Comput. Simul. 10 (2), 176–185 (2018).
Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Fundamentals of Atmospheric Optics (Nauka, St. Petersburg, 2003; Cambridge International Science, Cambridge, 2008).
T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM: Lab. Znanii, Moscow, 2006) [in Russian].
B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms,” Atmos. Ocean. Opt. 16 (3), 244–246 (2003).
B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave,” J. Geophys. Res. 109 (D2), D02110 (2004).
B. A. Fomin and M. de Paula Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave,” J. Geophys. Res. 110 (D2), D02106 (2005).
E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” J. Geophys. Res. 102 (D14), 16663–16682 (1997).
M. J. Iacono, E. J. Mlawer, and S. A. Clough, “Validation of the RRTM shortwave radiation model and comparison to GCM shortwave models,” in Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Proceedings (Atlanta, GA, March 19–23, 2001). https://armweb0-stg.ornl.gov/publications/proceedings/conf11/extended_abs/iacono_mj.pdf.
M. J. Iacono, J. S. Delamere, E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, “Cloudy sky RRTM shortwave radiative transfer and comparison to the revised ECMWF shortwave model,” in Twelfth ARM Science Team Meeting Proceedings (St. Petersburg, FL, April 8–12, 2002). https://www.arm.gov/publications/proceedings/conf12/extended_abs/iacono-mj.pdf.
S. Cusack, J. M. Edwards, and J. M. Crowther, “Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre Climate Model,” J. Geophys. Res. 104 (D2), 2051–2057 (1999).
T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, “Modeling of the radiation process in an atmospheric general circulation model,” Appl. Opt. 39 (27), 4869–4878 (2000).
R. J. Hogan, “The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function,” J. Atmos. Sci. 67 (6), 2086–2100 (2010).
A. V. Shilkov and M. N. Gerthev, “Verification of the Lebesgue averaging method,” Math. Models Comput. Simul. 8 (2), 93–107 (2016).
M. A. Tolstykh, J.-F. Geleyn, E. M. Volodin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, S. V. Kostrykin, V. G. Mizyak, R. Yu. Fadeev, V. V. Shashkin, A. V. Shlyaeva, I. N. Ezau, and A. Yu. Yurova, “Development of the multiscale version of the SL-AV global atmosphere model,” Russ. Meteorol. Hydrol. 40 (6), 374– 382 (2015).
M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, S. V. Travova (Makhnorylova), G. S. Goyman, V. G. Mizyak, V. S. Rogutov, A. V. Shlyaeva, and A. Yu. Yurova, “Development of SL-AV global semi-Lagrangian atmosphere model in 2009–2019,” Gidrometeorol. Issled. Prognozy (Hydrometeorol. Res. Forecast.), No. 4 (374), 77–91 (2019).
I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth’s lower and middle atmosphere,” Atmos. Ocean. Opt. 31 (6), 582–589 (2018).
B. N. Chetverushkin, I. V. Mingalev, E. A. Fedotova, K. G. Orlov et al., “Calculating the natural atmospheric radiation using the general circulation model of the Earth’s lower and middle atmosphere,” Math. Models Comput. Simul. 12 (5), 803–815 (2020).
N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, and E. A. Fedotova, “A new version of the discrete ordinate method for the calculation of the intrinsic radiation in horizontally homogeneous atmospheres,” Comput. Math. Math. Phys. 55 (10), 1713–1726 (2015). https://doi.org/10.1134/S0965542515100103
N. A. Fuchs, The Mechanics of Aerosols (Izd. Akad. Nauk SSSR, Moscow, 1955; Macmillan, New York, 1964).
P. C. Reist, Introduction to Aerosol Science (Macmillan, New York, 1984; Mir, Moscow, 1987).
V. N. Piskunov, The Aerosol Dynamics (Fizmatlit, Moscow, 2010) [in Russian].
A. E. Aloyan, Modeling the Dynamics and Kinetics of Gaseous Admixtures and Aerosols in the Atmosphere (Nauka, Moscow, 2008) [in Russian].
L. Gerard, J.-M. Piriou, R. Brožkova, J.-F. Geleyn, and D. Banciu, “Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model,” Mon. Weather Rev. 137 (11), 3960–3977 (2009).
V. Khvorostyanov and K. Sassen, “Cirrus cloud simulation using explicit microphysics and radiation. Part II: Microphysics, vapor and ice mass budgets, and optical and radiative properties,” J. Atmos. Sci. 55 (10), 1822–1845 (1998).
Ph. Lopez, “Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes,” Q. J. R. Meteorol. Soc. 128 (579), 229–257 (2002).
M. Hortal, “Aspects of the numerics of the ECMWF model,” in Proc. ECMWF Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling (Reading, UK, 7–11 September 1998), pp. 127–143. https://www.ecmwf.int/node/10015.
P. Courtier, C. Freydier, J.-F. Geleyn, F. Rabier, and M. Rochas, “The Arpege project at Météo-France,” in Proc. ECMWF Seminar on Numerical Methods in Atmospheric Models, (Reading, UK, 9–13 September 1991), Vol. 2, pp. 193–231. https://www.ecmwf.int/node/8798.
A. Staniforth, T. Melvin, and N. Wood, “GungHo! A new dynamical core for the Unified Model,” in Proc. ECMWF Seminar on Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling (Reading, UK, 2–5 September 2013), pp. 15–30. https://www.ecmwf.int/node/12389.
I. A. Rozinkina, E. D. Astakhova, V. I. Tsvetkov, Yu. V. Alferov, T. Ya. Ponomareva, A. E. Nikitin, D. V. Vaskova, V. V. Kopeykin, and E. V. Churiulin, “Development of deterministic and ensemble numerical weather prediction systems based on the global spectral atmospheric model of the Hydrometcentre of Russia in 2009–2019,” Gidrometeorol. Issled. Prognozy (Hydrometeorol. Res. Forecast.), No. 4 (374), 54–76 (2019).
Core Documentation of the COSMO-Model, Parts I-VII. http://www.cosmo-model.org/content/model/documentation/core/default.htm.
WRF-ARW developed in NCAR: A Description of the Advanced Research WRF Version 3 (2008): WRF Model Users’ Page. http://www.mmm.ucar.edu/wrf/users.
M. B. Ek, K. E. Mitchell, Y. Lin et al., “Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model,” J. Geophys. Res. 108 (D22), 8851 (2003).
L. J. Donner, B. L. Wyman, R. S. Hemler, L. W. Horowitz, Y. Ming, M. Zhao, J.-C. Golaz, P. Ginoux, S.-J. Lin, M. D. Schwarzkopf et al., “The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3,” J. Clim. 24 (13), 3484–3519 (2011).
Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Technical Note NCAR/TN-486+STR (National Center for Atmospheric Research, Boulder, CO, 2010). http://www.cesm.ucar.edu/models/cesm1.2/cam/docs/description/cam5_desc.pdf.
V. A. Bakhtin, V. A. Kryukov, B. N. Chetverushkin, and E. V. Shil’nikov, “Extension of the DVM parallel programming model for clusters with heterogeneous nodes,” Dokl. Math. 84 (3), 879–881 (2011).
B. N. Chetverushkin and E. V. Shilnikov, “Software package for 3D viscous gas flow simulation on multiprocessor computer systems,” Comput. Math. Math. Phys. 48 (2), 295–305 (2008).
V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Problems of modeling climate and climate change,” Izv. Atmos. Ocean. Phys. 42 (5), 568–585 (2006).
V. N. Lykosov, A. V. Glazunov, D. V. Kulyamin et al., Supercomputer Modeling in the Physics of the Climate System (Izd. Mosk. Gos. Univ., Moscow, 2012) [in Russian].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chetverushkin, B.N., Mingalev, I.V., Chechetkin, V.M. et al. Models of the General Circulation of the Earth’s Atmosphere: Achievements and Directions of Development. Math Models Comput Simul 13, 561–570 (2021). https://doi.org/10.1134/S2070048221040098
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2070048221040098