Skip to main content
Log in

Modeling Elastic Properties of Composites using Asymptotic Averaging Method with Imperfect Interface

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The paper presents a modification of the asymptotic averaging method for solving the homogenization problem of elastic properties for composite materials. The elasticity of the phase interface is taken into account. The conditions of a soft imperfect interface are considered, which account for a displacement jump on the phase boundary. A review of the interface-modeling methods in composite materials is presented. The finite element method is used for the numerical implementation of the averaging method. A model of a interface finite element is proposed. Elastic properties averaging is adapted to the presence of a discontinuity in the displacement field. Application limits of the soft imperfect interface are estimated in terms of interphase layer properties. The identification of the interface parameters using experimental data is considered. Computational experiments are conducted for dispersed-reinforced and unidirectional composite with isotropic inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. D. Achenbach and H. Zhu, “Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites,” J. Mech. Phys. Solids 37 (3), 81–393 (1989).

    Article  Google Scholar 

  2. V. E. Zgaevskii and Yu. G. Yanovskii, “Mechanical characteristics of a layer of macromolecules near the surface of a filler,” J. Compos. Mech. Des. 3 (1), 83–89 (1997).

    Google Scholar 

  3. P. G. Khalatur, “Computer simulation of thin polymer layers,” Makromol. Chem., Macromol. Symp. 44 (1), 23–32 (1991).

    Article  Google Scholar 

  4. V. E. Zgaevskij, Yu. G. Yanovskii, A. N. Vlasov, N. K. Balabaev, and Yu. N. Karnet, “Structure and micromechanical properties of interphase layers of polymer matrix composite,” Mekh. Kompoz. Mater. Konstr. 5 (2), 109–122 (1999).

    Google Scholar 

  5. R. M. Christensen and K. H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models,” J. Mech. Phys. Solids 27 (4), 315–330 (1979).

    Article  MATH  Google Scholar 

  6. Y. Mikata and M. Taya, “Stress field in a coated continuous fiber composite subjected to thermomechanical loadings,” J. Compos. Mater. 19 (6), 554–578 (1985).

    Article  Google Scholar 

  7. Y. Benveniste, G. J. Dvorak, and T. Chen, “Stress fields in composites with coated inclusions,” Mech. Mater. 7 (4), 305–317 (1989).

    Article  Google Scholar 

  8. N. J. Pagano and G. P. Tandon, “Elastic response of multi-directional coated-fiber composites,” Compos. Sci. Technol. 31 (4), 273–293 (1988).

    Article  Google Scholar 

  9. I. Sevostianov, R. Rodriguez-Ramos, R. Guinovart-Diaz, J. Bravo-Castillero, and F. J. Sabina, “Connections between different models describing imperfect interfaces in periodic fiber-reinforced composites,” Int. J. Solids Struct. 49 (13), 1518–1525 (2012).

    Article  Google Scholar 

  10. M. Goland and E. Reissner, “The stresses in cemented joints,” J. Appl. Mech., Trans. ASME 66, A17–A27 (1944).

    Article  Google Scholar 

  11. Y. Benveniste, “The effective mechanical behaviour of composite materials with imperfect contact between the constituents,” Mech. Mater. 4 (2), 197–208 (1985).

    Article  Google Scholar 

  12. Z. Hashin, “Thermoelastic properties of fiber composites with imperfect interface,” Mech. Mater. 8 (4), 333–348 (1990)

    Article  Google Scholar 

  13. Z. Hashin, “The spherical inclusion with imperfect interface,” J. Appl. Mech. 58 (2), 444–449 (1991).

    Article  Google Scholar 

  14. Z. Hashin, “Thermoelastic properties of particulate composites with imperfect interface,” J. Mech. Phys. Solids 39 (6), 745–762 (1991).

    Article  MathSciNet  Google Scholar 

  15. Z. Hashin, “Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli,” J. Mech. Phys. Solids 40 (4), 767–781 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Hashin, “Thin interphase/imperfect interface in elasticity with application to coated fiber composites,” J. Mech. Phys. Solids 50 (12), 2509–2537 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Bövik, “On the modelling of thin interface layers in elastic and acoustic scattering problems,” Q. J. Mech. Appl. Math. 47 (1), 17–42 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Benveniste and T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity,” Mech. Mater. 33 (6), 309–323 (2001).

    Article  Google Scholar 

  19. D. Caillerie and J. C. Nedelec, “The effect of a thin inclusion of high rigidity in an elastic body,” Math. Methods Appl. Sci. 2 (3), 251–270 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Benveniste, “A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media,” J. Mech. Phys. Solids 54 (4), 708–734 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Klarbring, “Derivation of a model of adhesively bonded joints by the asymptotic expansion method,” Int. J. Eng. Sci. 29 (4), 493–512 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Klarbring and A. B. Movchan, “Asymptotic modelling of adhesive joints,” Mech. Mater. 28 (1–4), 137–145 (1998).

    Article  Google Scholar 

  23. G. Geymonat, F. Krasucki, and S. Lenci, “Mathematical analysis of a bonded joint with a soft thin adhesive,” Math. Mech. Solids 4 (2), 201–225 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Lebon, R. Rizzoni, S. Ronel-Idrissi, and C. Licht, “Analysis of non-linear soft thin interfaces,” in Proc. Sixth Int. Conf. on Computational Structures Technology (ICCST02), Prague, September 2002, Paper 65, pp. 155–156. https://doi.org/10.4203/ccp.75.65

  25. F. Lebon and S. Ronel-Idrissi, “Asymptotic analysis of Mohr–Coulomb and Drucker–Prager soft thin layers,” Steel Compos. Struct. 4 (2), 133–147 (2004).

    Article  Google Scholar 

  26. F. Lebon and R. Rizzoni, “Asymptotic behavior of a hard thin linear elastic interphase: An energy approach,” Int. J. Solids Struct. 48 (3–4), 441–449 (2011).

    Article  MATH  Google Scholar 

  27. R. Rizzoni, S. Dumont, F. Lebon, and E. Sacco, “Higher order model for soft and hard elastic interfaces,” Int. J. Solids Struct. 51 (23–24), 4137–4148 (2014).

    Article  Google Scholar 

  28. N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials (Nauka, Moscow, 1984; Mathematics and Its Applications (Soviet Ser.), Vol. 36, Kluwer Acad. Publ., Dordrecht, 1989).

  29. B. E. Pobedrya, Mechanics of Composite Materials (Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  30. K. A. Wilkinson and D. A. Ordonez (Eds.), Adhesive Properties in Nanomaterials, Composites and Films (Nova Science Publ., New York, 2011).

    Google Scholar 

  31. F. Lebon, S. Dumont, R. Rizzoni, J. C. López-Realpozo, R. Guinovart-Díaz, R. Rodríguez-Ramos, J. Bravo-Castillero, and F. J. Sabina, “Soft and hard anisotropic interface in composite materials,” Composites Part B: Eng. 90, 58–68 (2016).

    Article  Google Scholar 

  32. R. Rodríguez-Ramos, R. de Medeiros, R. Guinovart-Díaz, J. Bravo-Castillero, J. A. Otero, and V. Tita, “Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence,” Compos. Struct. 99, 264–275 (2013).

    Article  Google Scholar 

  33. Yu. I. Dimitrienko and A. P. Sokolov, “Elastic properties of composite materials,” Math. Models Comput. Simul. 2 (1), 116–130 (2010).

    Article  Google Scholar 

  34. Yu. I. Dimitrienko and A. P. Sokolov, “Numerical modeling of composites with multiscale microstructure,” Bull. Russ. Acad. Sci. Phys. 75 (11), 1457–1461 (2011).

    Article  MATH  Google Scholar 

  35. P. Rahul-Kumar, A. Jagota, S. J. Bennison, S. Saigal, and S. Muralidhar, “Polymer interfacial fracture simulations using cohesive elements,” Acta Mater. 47 (15–16), 4161–4169 (1999).

    Article  Google Scholar 

  36. W.-G. Jiang, R.-Z. Zhong, Q. H. Qin, and Y.-G. Tong, “Homogenized finite element analysis on effective elastoplastic mechanical behaviors of composite with imperfect interfaces,” Int. J. Mol. Sci. 15 (12), 23389–23407 (2014).

    Article  Google Scholar 

  37. S. Guessasma, N. Benseddiq, and D. Lourdin, “Effective Young’s modulus of biopolymer composites with imperfect interface,” Int. J. Solids Struct. 47 (18–19), 2436–2444 (2010).

    Article  MATH  Google Scholar 

  38. A. A. Nasedkina and A. Rajagopal, “Mathematical and computer homogenization models for bulk mixture composite materials with imperfect interfaces,” Mater. Phys. Mech. 37 (1), 31–34 (2018).

    Google Scholar 

  39. H. Sertse and W. Yu, “A micromechanical approach to imperfect interface analysis of heterogeneous materials,” in 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, January 2015, AIAA 2015-0394, pp. 1–30.

  40. V. Schetinin and D. Khominich, nla3d – open source finite element programming framework (2018). Url: https://github.com/dmitryikh/nla3d/

  41. A. P. Sokolov and V. N. Shchetinin, “Identification of elastic properties of the adhesion layer of dispersed-reinforced composite materials from experimental data,” Mekh. Kompoz. Mater. Konstr. 24 (4), 555–581 (2018).

    Google Scholar 

  42. O. C. Zienkiewicz, The Finite Element Method in Engineering Science (McGraw-Hill, London, New York, 1971).

    MATH  Google Scholar 

  43. J. C. Smith, “Experimental values for the elastic constants of a particulate-filled glassy polymer,” J. Res. Natl. Bur. Stand. A Phys. Chem. 80A (1), 45–49 (1976).

    Article  Google Scholar 

  44. P. D. Soden, M. J. Hinton, and A. S. Kaddour, “Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates,” Compos. Sci. Technol. 58 (7), 1011–1022 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Sokolov, V. N. Shchetinin or M. Yu. Kozlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.P., Shchetinin, V.N. & Kozlov, M.Y. Modeling Elastic Properties of Composites using Asymptotic Averaging Method with Imperfect Interface. Math Models Comput Simul 13, 347–359 (2021). https://doi.org/10.1134/S2070048221020150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221020150

Keywords:

Navigation