Skip to main content
Log in

Performance of Elbrus-8C Processor in Supercomputer CFD Simulations

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

This work is devoted to evaluating the performance of a multicore CPU Elbrus-8C processor in supercomputer computational fluid dynamics (CFD) applications. Parallel simulation codes based on highly accurate methods on unstructured meshes for modeling the turbulent flows are considered. The main features of the Elbrus architecture are described, and the approaches for adaptating and optimizing the computing software are presented. The performance is investigated for both entire algorithms and their operations separately. The results of comparative testing with different multicore Intel and AMD CPUs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. J. Dongarra, “The LINPACK Benchmark: an explanation ICS 1987: Supercomputing,” Lect. Notes Comput. Sci. 297, 456–474 (1988).

    Article  Google Scholar 

  2. J. Dongarra, M. A. Heroux, and P. Luszczek, “HPCG benchmark: a new metric for ranking high performance computing systems,” Technical Report (Electr. Eng. Comput. Sci. Dep., Knoxville, TN, 2015). http://www.hpcg-benchmark.org/.

    Google Scholar 

  3. D. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A. Fatoohi, P. Frederickson, T. A. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and K. Weeratunga, “The NAS parallel benchmarks,” Int. J. High Perform. Comput. Appl. 5, 63–73 (1991).

    Google Scholar 

  4. E. O. Tyutlyayeva, S. S. Konyukhov, A. A. Moskovskiy, and I. O. Odintsov, “Assessing the potential use of the Elbrus platform for high-performance computing,” in Proceedings of the Conference on Supercomputer Days in Russia,2016 (Mosk. Gos. Univ., Moscow, 2016), pp. 373-385.

  5. P. B. Bogdanov and O. Yu. Sudareva, “The KOMDIV microprocessors performance on a number of typical computational problems,” Inform. Tekhnol. Vychisl. Sist. 4, 104–111 (2017).

    Google Scholar 

  6. A. V. Gorobets, “Parallel technologies for solving CFD problems using high-accuracy algorithms,” Comput. Math. Math. Phys. 55, 638–649 (2015).

    Article  MathSciNet  Google Scholar 

  7. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, and T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale CFD and CAA simulations,” Vychisl. Metody Programmir. 13, 110–125 (2012).

    Google Scholar 

  8. P. A. Bakhvalov and T. K. Kozubskaya, “Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes,” Comput. Math. Math. Phys. 57, 680–697 (2017).

    Article  MathSciNet  Google Scholar 

  9. H. A. van der Vorst, “A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).

    Article  MathSciNet  Google Scholar 

  10. A. Gorobets, “Parallel algorithm of the NOISEtte code for CFD and CAA simulations,” Lobachevskii J. Math. 39, 524–532 (2018).

    Article  MathSciNet  Google Scholar 

  11. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, Heidelberg, 2009). https://doi.org/10.1007/b79761

    Book  Google Scholar 

  12. A. Gorobets, S. Soukov, and P. Bogdanov, “Multilevel parallelization for simulating turbulent flows on most kinds of hybrid supercomputers,” Comput. Fluids (2018, in press). https://doi.org/10.1016/j.compfluid.2018.03.011

  13. A. S. Kozhin, N. Y. Polyakov, D. M. Alfonso, R. V. Demenko, P. A. Klishin, E. S. Kozhin, M. V. Slesarev, E. V. Smirnova, D. A. Smirnov, P. A. Smolyanov, V. O. Kostenko, F. A. Gruzdov, V. V. Tikhorskiy, and Y. K. Sakhin, “The 5th generation 28nm 8-core VLIW 'Elbrus-8C' processor architecture,” in Proceedins of the 2016 International Conference on Engineering and Telecommunication EnT-2016, Moscow,2016, pp. 85–89.

  14. D. M. Al’fonso, R. V. Demenko, A. S. Kozhin, E. S. Kozhin, R. E. Kolychev, V. O. Kostenko, N. Yu. Polyakov, E. V. Smirnova, D. A. Smirnov, P. A. Smol’yanov, and V. V. Tikhorskiy, “Eight-core 'El'brus-8C' processor microarchitecture,” Vopr. Radioelektron., Ser. EVT, No. 3, 6–13 (2016).

    Google Scholar 

  15. A. S. Kozhin, M. I. Neyman-zade, and V. V. Tikhorskiy, “Memory subsystem impact on the 8-core 'El'brus-8C' processor performance,” Vopr. Radioelektron., Ser. EVT, No. 3, 13–21 (2017).

    Google Scholar 

  16. P. L. Roe, “Approximate Riemann solvers, parameter vectors and difference schemes,” J. Comput. Phys. 43, 357–372 (1981).

    Article  MathSciNet  Google Scholar 

  17. A. V. Gorobets, M. I. Neiman-zade, S. K. Okunev, A. A. Kaliakin, and S. A. Sukov, “Performance of Elbrus-8C CPU in supercomputer CFD applications,” KIAM Preprint Keldysha, No. 152 (Keldysh Inst. Appl. Math., Moscow, 2018). https://doi.org/10.20948/prepr-2018-152

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank B.N. Chetverushkin and A.K. Kim for their help and discussion of the current work.

Funding

The work is supported by the Program of fundamental studies of presidium no. 26 of the Russian Academy of Sciences on the research priorities determined by the presidium of the Russian Academy of Sciences for 2018: Fundamentals of designing the algorithms and software for promising high-performance computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gorobets.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorobets, A.V., Neiman-Zade, M.I., Okunev, S.K. et al. Performance of Elbrus-8C Processor in Supercomputer CFD Simulations. Math Models Comput Simul 11, 914–923 (2019). https://doi.org/10.1134/S2070048219060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048219060073

Keywords:

Navigation