Skip to main content
Log in

The Dynamics of the Epidemic Process with the Antibiotic-Resistant Variant of the Pathogen Agent

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The parasite–host system is considered with two different variants of a pathogen agent with complete cross protection, where one of the variants may transform into another with a certain probability. This system corresponds to the epidemic process initiated by the antibiotic-resistant variant of the pathogen agent. The behavior of solutions is studied. It is proved that the main case has a unique nontrivial steady-state solution that is a global attractor. The speed of the exponential approach of small deviations to the steady-state solution is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. I. Briko, A. Ya. Mindlina, R. V. Polibin, T. V. Sokolova, and N. N. Tsapkova, “At the forefront of epidemiology (the 85th anniversary of the department of epidemiology and evidence-based medicine Sechenov First Moscow State Medical University),” Sechenov. Vestn. 1 (23), 4–12 (2016).

    Google Scholar 

  2. K. K. Avilov and A. A. Romànyukhà, “Mathematical models of tuberculosis extension and control of it (review),” Mat. Biol. Bioinform. 2, 188–318 (2007).

    Article  Google Scholar 

  3. E. A. Nosova and A. A. Romanyukha, “Mathematical model of HIV-infection transmission and dynamics in the size of risk groups,” Mat. Model. Comput. Simul. 5, 379–393 (2013).

    Article  Google Scholar 

  4. V. Moreno, B. Espinoza, K. Barley, M. Paredes, D. Bichara, A. Mubayi, and C. Castillo-Chavez, “The role of mobility and health disparities on the transmission dynamics of Tuberculosis,” Theor. Biol. Med. Model. 14, 3 (2017).

    Article  Google Scholar 

  5. K. Bornstein, L. Hungerford, D. Hartley, J. D. Sorkin, M. D. Tapia, S. O. Sow, U. Onwuchekwa, R. Simon, S. M. Tennant, and M. M. Levine, “Modeling the potential for vaccination to diminish the burden of invasive non-typhoidal salmonella disease in young children in Mali, West Africa,” PLoS Negl Trop Dis. 11, e0005283 (2017).

    Article  Google Scholar 

  6. E. S. McBryde, M. T. Meehan, T. N. Doan, R. Ragonnet, B. J. Marais, V. Guernier, and J. M. Trauer, “The risk of global epidemic replacement with drug-resistant Mycobacterium tuberculosis strains,” Int. J. Infect Dis. 56, 14 (2017).

    Article  Google Scholar 

  7. A. N. Gerasimov and V. N. Razzhevaikin, “Epidemic dynamics in a heterogeneous incompletely isolated population with allowance for seasonal variations in the infection rate,” Comput. Math. Math. Phys. 48, 1406–1417 (2008).

    Article  MathSciNet  Google Scholar 

  8. R. M. Anderson and R. M. May, Infectious Disease of Humans and Control (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 15-07-06947.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gerasimov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Semenova

APPENDIX

APPENDIX

Proof of Theorem 5. Since at \({{I}_{1}}(0) \ne 0\) we assume that \({{I}_{1}}(t) > 0,{\text{ }}{{I}_{2}}(t) > 0\) for positive times, then, without loss of generality, we assume that \({{I}_{2}}(0)\) > 0. In addition, without loss of generality, we assume that \(S(t) > 0,{\text{ }}t \geqslant 0\).

If \({{I}_{1}}(t) \to 0\), then the solutions of system (1) tend to the solutions of a system with zero \({{I}_{1}}(t)\). However, this is the parasite–host system with the single variant of the pathogen agent. If \({{R}_{2}} > 1\), then the solutions of the system tend to the steady-state solution with \(S(t) \to {1 \mathord{\left/ {\vphantom {1 {{{R}_{{{\kern 1pt} 2}}}}}} \right. \kern-0em} {{{R}_{{{\kern 1pt} 2}}}}}\), and if \({{R}_{{{\kern 1pt} 2}}} \leqslant 1\), then they tend to the trivial steady-state solution with \(S(t) \to 1\). However, if \(S(t)\) is fairly close to \({1 \mathord{\left/ {\vphantom {1 {{{R}_{{{\kern 1pt} 2}}}}}} \right. \kern-0em} {{{R}_{{{\kern 1pt} 2}}}}}\) in the first case, then it follows from \({{R}_{1}} > {{R}_{2}}\) that \({{\alpha }_{1}}S - {{\beta }_{1}} - m > 0\), and \({{I}_{1}}(t)\) is an increasing function that can tend to zero. In the second case, this statement follows from \({{R}_{1}} > 1\). Consequently, \({{I}_{1}}(t)\) does not tend to zero, and there is an \(\varepsilon > 0\) and an increasing sequence of time moments \({{T}_{k}},k = 1,...,\infty \) such that \({{I}_{1}}({{T}_{k}}) > \varepsilon ,{\text{ }}{{T}_{k}} \to \infty \).

Then it follows from the second equation of system (1) that \({{I}_{2}}({{T}_{k}}) > {{\varepsilon }_{1}},{\text{ }}{{T}_{k}} \to \infty ,\,\,{\text{and}}\,\,{{\varepsilon }_{1}} > 0\). Dividing the first equation of system (1) by \({{I}_{1}}\) and integrating it over time we obtain

$${{\alpha }_{1}}\int\limits_0^{{{T}_{k}}} S (t)dt - ({{\beta }_{1}} + m){{T}_{k}} = \ln {{I}_{1}}({{T}_{k}}) - \ln {{I}_{1}}(1),$$

from which we get

$${{\alpha }_{1}}\int\limits_0^{{{T}_{k}}} S (t)dt - {{\alpha }_{1}}{{T}_{k}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} = \ln {{I}_{1}}({{T}_{k}}) - \ln {{I}_{1}}(1)\,\,{\text{or}}\,\,\left| {\int\limits_0^{{{T}_{k}}} S (t)dt - {{T}_{k}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} } \right| \leqslant \frac{{\left| {\ln {{I}_{1}}(0) - \ln \varepsilon } \right|}}{{{{\alpha }_{1}}}}.$$
(A1)

Adding all three equations of system (1) and integrating we obtain

$$\left( {{{I}_{1}}({{T}_{k}}) + {{I}_{2}}({{T}_{k}}) + S({{T}_{k}})} \right) - \left( {{{I}_{1}}(0) + {{I}_{2}}(0) + S(0)} \right) = \gamma T - {{\beta }_{1}}\int\limits_0^{{{T}_{k}}} {{{I}_{1}}} (t)dt - {{\beta }_{2}}\int\limits_0^{{{T}_{k}}} {{{I}_{2}}} (t)dt - \gamma \int\limits_0^{{{T}_{k}}} S (t)dt.$$

Since the module of the left-hand term does not exceed unity, then

$$\left| {{{\beta }_{1}}\int\limits_0^{{{T}_{k}}} {{{I}_{1}}} (t)dt + {{\beta }_{2}}\int\limits_0^{{{T}_{k}}} {{{I}_{2}}} (t)dt + \gamma \int\limits_0^{{{T}_{k}}} S (t)dt - {{\beta }_{1}}{{T}_{k}}{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}} - {{\beta }_{2}}{{T}_{k}}{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}} - \gamma {{T}_{k}}{{S}_{2}}} \right| \leqslant 1,$$

from which, after taking inequality (A1) into consideration, we obtain that for a constant

(A2)

We denote \({{A}_{k}} = \int_0^{{{T}_{k}}} {{{I}_{1}}} (t)dt - {{T}_{k}}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}} = \int_0^{{{T}_{k}}} {{{i}_{1}}} (t)dt\). Then it follows from (A2) that the module of \({{A}_{k}} + \frac{{{{\beta }_{2}}}}{{{{\beta }_{1}}}}\int_0^{{{T}_{k}}} {{{i}_{2}}(t)} dt\) is uniformly bounded. Integrating the first equation of system (3) over time, we obtain that the module of the expression

$$\left( {{{\beta }_{1}} + m} \right){{A}_{k}} - {{\alpha }_{1}}\int\limits_0^{{{T}_{k}}} {({{I}_{1}}(t)S(t) - } {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} )dt$$
(A3)

is uniformly bounded.

Since \({{I}_{1}}(t)S(t) = ({{i}_{1}}(t) + {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}})(s(t) + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} ) = {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} {{i}_{1}}(t) + {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}{{s}_{1}}(t) + {{i}_{1}}(t){{s}_{1}}(t)\) and \(\int_0^{{{T}_{k}}} {{{I}_{1}}(t)} S(t)dt\) = \({{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} {{T}_{k}} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} \int_0^{{{T}_{k}}} {{{i}_{1}}(t)} dt + {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}\int_0^{{{T}_{k}}} {s(t)} dt + \int_0^{{{T}_{k}}} {{{i}_{1}}(t)s(t)} dt\), and the second term on the right of equality is \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} {{A}_{k}}\), and it follows from (A1) that the third term is uniformly bounded, then

$$\int\limits_0^{{{T}_{k}}} {{{I}_{1}}(t)} S(t)dt - {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} {{T}_{k}} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} {{A}_{k}} - \int\limits_0^{{{T}_{k}}} {{{i}_{1}}(t)s(t)} dt,$$

or

$$\int\limits_0^{{{T}_{k}}} {{{I}_{1}}(t)} S(t)dt - {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} {{T}_{k}} - {{{{A}_{k}}} \mathord{\left/ {\vphantom {{{{A}_{k}}} {{{R}_{{{\kern 1pt} 1}}}}}} \right. \kern-0em} {{{R}_{{{\kern 1pt} 1}}}}} - \int\limits_0^{{{T}_{k}}} {{{i}_{1}}(t)s(t)} dt$$

is uniformly bounded. Dividing expression (A3) by α1 we obtain that \(\frac{{{{\beta }_{1}} + m}}{{{{\alpha }_{1}}}}{{A}_{k}}\)\(\int_0^{{{T}_{k}}} {({{I}_{1}}(t)S(t) - {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} )dt} \) = \(\frac{{{{A}_{k}}}}{{{{R}_{1}}}} - \int_0^{{{T}_{k}}} {({{I}_{1}}(t)S(t) - {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} )dt} \) is uniformly bounded. However, these are the first three terms of the obtained expression; consequently, the fourth term is also uniformly bounded and

(A4)

We add the first two equations of system (1), integrate, and obtain that the \({{\alpha }_{1}}\int_0^{{{T}_{k}}} {({{I}_{1}}(t)S(t) - } {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} )dt - {{\alpha }_{2}}\int_0^{{{T}_{k}}} {({{I}_{2}}(t)S(t) - {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} )dt} \) module is uniformly bounded, or, taking (A2) into consideration, that the module of

$$\int\limits_0^{{{T}_{k}}} {({{I}_{2}}(t)S(t) - } {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} )dt - \frac{{{{\beta }_{1}} + m}}{{{{\alpha }_{2}}}}{{A}_{k}}$$
(A5)

is uniformly bounded. Then, from

$$\int\limits_0^{{{T}_{k}}} {{{I}_{2}}(t)} S(t)dt = {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{2}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} {{T}_{k}} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} \int\limits_0^{{{T}_{k}}} {{{i}_{2}}(t)} dt + {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{2}}\int\limits_0^{{{T}_{k}}} {s(t)} dt + \int\limits_0^{{{T}_{k}}} {{{i}_{2}}(t)s(t)} dt,$$

taking into account that the third term of the expansion is uniformly bounded, \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} \int_0^{{{T}_{k}}} {{{i}_{2}}(t)} dt = \frac{1}{{{{R}_{{{\kern 1pt} 1}}}}}\int_0^{{{T}_{k}}} {{{i}_{2}}(t)} dt\), and taking into consideration the uniform boundedness of the module of \({{A}_{k}} - \frac{{{{\beta }_{2}}}}{{{{\beta }_{1}}}}\int_0^{{{T}_{k}}} {{{i}_{2}}(t)} dt\), we obtain that

(A6)

Note that, since \({{R}_{{{\kern 1pt} 1}}} > {{R}_{2}},{\text{ }}{{R}_{{{\kern 1pt} 1}}} > 1\), then \(\frac{1}{{{{R}_{1}}}}\frac{{{{\beta }_{1}}}}{{{{\beta }_{2}}}} - \frac{{{{\alpha }_{1}}}}{{{{\alpha }_{2}}}} > 0\). Dividing the third equation of system (1) by \(S(t)\), we obtain \(\frac{d}{{dt}}\ln S = - ({{\alpha }_{1}}{{I}_{1}} + {{\alpha }_{2}}{{I}_{2}}) + \frac{\gamma }{S} - \gamma \). Since \(S(t)\) is a variable within the range from 0 to 1, then from the Taylor expansion we have

$$\frac{1}{{S(t)}} = 1 - S(t) + \theta (S){{S}^{2}}(t),$$

where \(\theta (S)\) is a positive function bounded from below by a positive constant.

Relation (A1) shows that the integral of \(S(t) - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} \) over time is uniformly bounded. However, if the integral of \(\int_0^{{{T}_{k}}} {(\theta (S){{S}^{2}}(t) - \theta (S){{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} }}^{2}})dt} \) is also uniformly bounded, then it follows from the uniform boundedness of the derivative of \(S(t)\) over time that \(S(t) \to \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} \), from which, taking the first equation into consideration, it follows that \({{I}_{1}}(t) \to {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}}\), and then the same follows for \({{I}_{2}}(t)\).

If however \(\int_0^{{{T}_{k}}} {(\theta (S){{S}^{2}}(t) - \theta (S){{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} }}^{2}})dt} \) tends to plus infinity, then, from (A5), we obtain that the integral of \({{\alpha }_{1}}{{I}_{1}} + {{\alpha }_{2}}{{I}_{2}} - {{\alpha }_{1}}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{1}} - {{\alpha }_{2}}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }_{2}}\) tends to plus infinity with an increase in \({{T}_{k}}\). Then, proceeding from relation (A2) and taking into consideration that \({{R}_{{{\kern 1pt} 1}}} > {{R}_{2}}\), we obtain that \({{A}_{k}} \to + \infty \).

Adding the equations of system (1) we obtain \(\frac{d}{{dt}}\)(I1 + I2 + S) = γ − (β1I1 + β2I2 + γS), or \({{d({{i}_{1}} + {{i}_{2}} + s)} \mathord{\left/ {\vphantom {{d({{i}_{1}} + {{i}_{2}} + s)} {dt}}} \right. \kern-0em} {dt}} = - {{\beta }_{1}}{{i}_{1}} - {{\beta }_{2}}{{i}_{2}} - \gamma s\). Multiplying by \({{i}_{1}} + {{i}_{2}} + s\) we obtain that

$$\begin{gathered} - \frac{1}{2}\frac{d}{{dt}}{{({{i}_{1}} + {{i}_{2}} + s)}^{2}} = \left( {{{\beta }_{1}}{{i}_{1}} + {{\beta }_{2}}{{i}_{2}} + \gamma s} \right)\left( {{{i}_{1}} + {{i}_{2}} + s} \right) \\ = {{\beta }_{1}}i_{1}^{2} + {{\beta }_{2}}i_{2}^{2} + \gamma {{s}^{2}} + ({{\beta }_{1}} + {{\beta }_{2}}){{i}_{1}}{{i}_{2}} + ({{\beta }_{1}} + \gamma ){{i}_{1}}s + ({{\beta }_{2}} + \gamma ){{i}_{2}}s. \\ \end{gathered} $$

Let us integrate over time. Since the integral on the left-hand side is uniformly bounded, then the integral on the right-hand side is also uniformly bounded.

It follows from relation (A4) that the integral of \({{i}_{1}}s\) is finite, and from relation (A6), it follows that the integral of \({{i}_{2}}s\) is either finite or tends to plus infinity. If the integral of \({{\beta }_{1}}i_{2}^{2} + {{\beta }_{2}}i_{2}^{2} + \gamma {{s}^{2}}\) is finite, then, due to the uniform boundedness of the derivatives, it follows that the solution tends to the steady-state form. Hence, all we have to do is to examine the case

$$\int\limits_0^{{{T}_{k}}} {{{i}_{1}}(t){{i}_{2}}(t)} dt \to - \infty .$$
(A7)

Dividing the second equation of system (1) by \({{I}_{2}}\), we obtain \(\frac{d}{{dt}}\ln {{I}_{2}} = {{\alpha }_{2}}S - {{\beta }_{2}}\) + \({{m{{I}_{1}}} \mathord{\left/ {\vphantom {{m{{I}_{1}}} {{{I}_{2}}}}} \right. \kern-0em} {{{I}_{2}}}}\). Let us integrate it over time to \({{T}_{k}}\). Since \({{I}_{2}}({{T}_{k}}) > {{\varepsilon }_{1}},\)\({{T}_{k}} \to \infty ,\)\({{\varepsilon }_{1}} > 0\), the left-hand side of the equality is uniformly bounded. It follows from (5) that \({{\alpha }_{2}}\int_0^{{{T}_{k}}} {Sdt} - {{\beta }_{2}}{{T}_{k}} + m{{T}_{k}}\frac{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}\) is uniformly bounded; thus, \(\int_0^{{{T}_{k}}} {\left( {\frac{{{{I}_{1}}}}{{{{I}_{2}}}} - \frac{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right)dt} \) should also be bounded. However, we have from the Taylor expansion of the function \(f(1 + x) = \frac{1}{{1 + x}}\) for \(x > - 1\) that \(f(1 + x) = \frac{1}{{1 + x}} = 1 - x - h(x){{x}^{2}}\), where h(x) is a positive function. Therefore,

$$\frac{{{{I}_{1}}}}{{{{I}_{2}}}} = \frac{{{{I}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}(1 + {{{{I}_{2}}} \mathord{\left/ {\vphantom {{{{I}_{2}}} {{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right. \kern-0em} {{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}})}} = \frac{{{{I}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}\left( {1 - \frac{{{{I}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}} + h\left( {\frac{{{{I}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right){{{\left( {\frac{{{{I}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right)}}^{2}}} \right) = \frac{{{{I}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}\left( {1 - \frac{{{{I}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right) + \frac{{{{I}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}h\left( {\frac{{{{I}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right){{\left( {\frac{{{{I}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right)}^{2}}.$$

The integral of the last term \(\frac{{{{I}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}h\left( {\frac{{{{I}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right){{\left( {\frac{{{{I}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right)}^{2}}\) is nonnegative because it is a nonnegative expression.

$$\frac{{{{I}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}\left( {1 - \frac{{{{I}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right) = \frac{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}} + {{i}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}\left( {1 - \frac{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}} + {{i}_{2}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}} \right) = - \frac{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}} + {{i}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}{{i}_{2}} = - \frac{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}{{i}_{2}} - \frac{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}{{i}_{1}}{{i}_{2}}.$$

However, as (A2) shows, \({{A}_{k}} + \frac{{{{\beta }_{2}}}}{{{{\beta }_{1}}}}\int_0^{{{T}_{k}}} {{{i}_{2}}(t)} dt\) is uniformly bounded; since \({{A}_{k}}\) is either uniformly bounded or \({{A}_{k}} \to + \infty \), then the integral of \( - \frac{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}{{i}_{2}}\) is either uniformly bounded or tends to \( + \infty \). Relation (A7) shows that the integral of \( - \frac{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{1}}}}{{{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I} }}_{2}}}}{{i}_{1}}{{i}_{2}}\) tends to \( + \infty \).

Therefore, the right-hand side of the equation \({{d(\ln {{I}_{2}})} \mathord{\left/ {\vphantom {{d(\ln {{I}_{2}})} {dt}}} \right. \kern-0em} {dt}} = {{\alpha }_{2}}S - {{\beta }_{2}} + {{m{{I}_{1}}} \mathord{\left/ {\vphantom {{m{{I}_{1}}} {{{I}_{2}}}}} \right. \kern-0em} {{{I}_{2}}}}\), when integrated to \({{T}_{k}}\), tends to \( + \infty \). We have come to a contradiction; consequently, the solution tends to the steady-state form, which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, A.N. The Dynamics of the Epidemic Process with the Antibiotic-Resistant Variant of the Pathogen Agent. Math Models Comput Simul 11, 884–893 (2019). https://doi.org/10.1134/S2070048219060061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048219060061

Keywords:

Navigation