Rayleigh-Taylor Instability Development in the Equatorial Ionosphere and a Geometry of an Initial Irregularity

  • N. M. KashchenkoEmail author
  • S. A. IshanovEmail author
  • S. V. MatsievskyEmail author


In this paper, we performed a numerical simulation for the conditions of the equatorial F‑region of the Earth’s ionosphere using the two-dimensional electrodynamically consistent mathematical MI2 model. The development time of ionospheric bubbles is shown to depend sufficiently strongly on the vertical scale and less strongly on the horizontal scale of the initial irregularity. Ionospheric bubbles developed more slowly at the generation of instability by increasing the plasma concentration than by depleting a plasma. On increasing the initial irregularity scale, three metric thresholds are experimentally found.


ionosphere Rayleigh-Taylor instability mathematical modeling numerical modeling initial perturbation metric threshold 



This work was supported by the Russian Foundation for Basic Research, project no. 17-01-00265.


  1. 1.
    S. L. Ossakow, S. T. Zalesak, B. E. McDonald, and P. K. Chaturvedi, “Nonlinear equatorial spread-F: Dependence of altitude of the F-peak and bottomside background electron density gradient scale length,” J. Geophys. Res. A 84, 17–39 (1979).CrossRefGoogle Scholar
  2. 2.
    C. R. Martinis, M. J. Mendillo, and J. Aarons, “Toward a synthesis of equatorial spread-F onset and suppression during geomagnetic storms,” J. Geophys. Res. A 110, A07306 (2005). Google Scholar
  3. 3.
    H. Kil, R. A. Heelis, L. J. Paxton., and S. J. Oh, “Formation of a plasma depletion shell in the equatorial ionosphere,” J. Geophys. Res. A 114, A11302 (2009).Google Scholar
  4. 4.
    D. L. Hysell, E. Kudeki, and J. L. Chau, “Possible ionospheric preconditioning by shear low leading to equatorial spread F,” Ann. Geophys. 23, 2647–2655 (2005).CrossRefGoogle Scholar
  5. 5.
    S. T. Zalesak, S. L. Ossakow, and P. K. Chaturvedi, “Nonlinear equatorial spread-F: the effect of neutral winds and background Pedersen conductivity,” J. Geophys. Res. 87, 151–166 (1982).CrossRefGoogle Scholar
  6. 6.
    B. N. Gershman, Dynamics of Ionospheric Plasma (Nauka, Moscow, 1974) [in Russian].Google Scholar
  7. 7.
    S. Matsievsky, N. Kashchenko, S. Ishanov, and L. Zinin, “3D modeling of equatorial F-scattering: comparison of MI3 and SAMI3 models,” Vestn. Balt. Univ. Kanta, No.4, 102–105 (2013).Google Scholar
  8. 8.
    N. M. Kashchenko and S. V. Matsievsky, “Mathematical modeling of instabilities of the equatorial F-layer of the ionosphere,” Vestn. Kaliningr. Univ., Ser. Inform. Telekommun., No. 3, 59–68 (2003).Google Scholar
  9. 9.
    M. N. Fatkullin and Yu. S. Sitnov, “Dipolar coordinate system and its some features,” Geomagn. Aeron. 12, 333–335 (1972).Google Scholar
  10. 10.
    A. E. Hedin, J. E. Salah, J. V. Evans, et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N2 density and temperature,” J. Geophys. Res. A 82, 2139-2147 (1977).CrossRefGoogle Scholar
  11. 11.
    A. E. Hedin, C. A. Reber, G. P. Newton, et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition,” J. Geophys. Res. A 82, 2148–2156 (1977).CrossRefGoogle Scholar
  12. 12.
    Guide to Reference and Standard Ionosphere Models (Am. Inst. Aeronaut. Astronaut., 2011).Google Scholar
  13. 13.
    J. D. Huba, G. Joyce, and J. Krall, “Three-dimensional modeling of equatorial spread F,” in Aeronomy of the Earth’s Atmosphere and Ionosphere, IAGA Special Sopron Book Series (Springer, 2011), Vol. 2, pp. 211–218.Google Scholar
  14. 14.
    V. V. Medvedev, S. A. Ishanov, and V. I. Zenkin, “Self-consistent model of the lower ionosphere,” Geomagn. Aeron. 42, 745–754 (2002).Google Scholar
  15. 15.
    V. V. Medvedev, S. A. Ishanov, and V. I. Zenkin, “Effect of vibrationally excited nitrogen on recombination in ionospheric plasma,” Geomagn. Aeron. 43, 231–238 (2003).Google Scholar
  16. 16.
    S. A. Ishanov, L. V. Zinin, S. V. Klevtsur, S. V. Matsievsky, and V. I. Saveliev, “Simulation of longitudinal variations of Earth ionosphere parameters,” Mat. Model. 28 (3), 64–78 (2016).MathSciNetzbMATHGoogle Scholar
  17. 17.
    D. N. Anderson and P.A Berhardt, “Modelling the effects of an H-gas release on the equatorial ionosphere,” J. Geophys. Res. 83, 4777–4790 (1978).CrossRefGoogle Scholar
  18. 18.
    P. A. Bernhardt, “Three-dimensional, time-dependent modeling of neutral gas diffusion in a nonuniform, chemically reactive atmosphere,” J. Geophys. Res. 84, 793–802 (1979).CrossRefGoogle Scholar
  19. 19.
    M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, and V. S. Chevanin, “A version of essentially nonoscillatory high_order accurate difference schemes for systems of conservation laws,” Math. Models Comput. Simul. 2, 304–316 (2010).MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. V. Safronov, “Accuracy estimation and comparative analysis of difference schemes of high-order approximation,” Vychisl. Metody Programmir. 11, 137–143 (2010).Google Scholar
  21. 21.
    B. van Leer, “Upwind and high-resolution methods for compressible flow: from donor cell to residual-distribution schemes,” Commun. Comp. Phys. 6, 192–206 (2006).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations