Advertisement

Damage Modeling in Hybrid Composites Subject to Low-Speed Impact

  • K. A. BeklemyshevaEmail author
  • I. B. PetrovEmail author
Article
  • 33 Downloads

Abstract

Polymer composites are reinforced with one or several metal layers to increase the strength of parts made of composites. This work is devoted to modeling the behavior of such composites subject to low-speed impact. This type of impact is especially dangerous for polymer composites, because it causes barely visible impact damage (BVID). The simulation is carried out using the grid-characteristic method, and various damage criteria (Tsai–Hill, Tsai–Wu, Drucker–Prager, Hashin, and Puck) and different types of contact between titanium and polymer composite are considered.

Keywords:

mathematical modeling continuum mechanics grid-characteristic method polymer composite hybrid composite damage low-speed impact 

Notes

ACKNOWLEDGMENTS

The work was carried out under the support of the Russian Science Foundation (grant no. 17-71-10240).

REFERENCES

  1. 1.
    S. Abrate, “Impact on laminated composite materials,” Appl. Mech. Rev. 44, 155–190 (1991).CrossRefGoogle Scholar
  2. 2.
    S. Abrate, “Impact on laminated composites: recent advances,” Appl. Mech. Rev. 47, 517–544 (1994).CrossRefGoogle Scholar
  3. 3.
    V. Lopresto and G. Caprino, “Damage mechanisms and energy absorption in composite laminates under low velocity impact loads,” in Dynamic Failure of Composite and Sandwich Structures. Solid Mechanics and Its Applications, Ed. by S. Abrate, B. Castanie, and Y. Rajapakse (Springer, Dordrecht, 2013), Vol. 192, pp. 209–289.Google Scholar
  4. 4.
    N. Hu, Y. Zemba, T. Okabe, C. Yan, H. Fukunaga, and A. Elmarakbi, “A new cohesive model for simulating delamination propagation in composite laminates under transverse loads,” Mech. Mater. 40, 920–935 (2008).CrossRefGoogle Scholar
  5. 5.
    K. A. I. B. Petrov, A. V. Vasyukov, K. A. Beklemysheva, A. S. Ermakov, A. S. Dziuba, and V. I. Golovan, “Numerical modeling of low energy strike at composite stringer panel,” Mat. Model. 26 (9), 96–110 (2014).zbMATHGoogle Scholar
  6. 6.
    K. A. Beklemysheva, A. S. Ermakov, I. B. Petrov, and A. V. Vasyukov, “Numerical simulation of the failure of composite materials by using the grid-characteristic method,” Math. Models Comput. Simul. 8, 557–567 (2016).MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. P. L. Sanga and C. G. O. Pantale, “Finite element simulation of low velocity impact damage on an aeronautical carbon composite structure,” Appl. Comp. Mater. 23, 1195–1208 (2016).CrossRefGoogle Scholar
  8. 8.
    N. S. Bakhvalov and G. P. Panasenko, Averaging Processes in Periodic Media (Nauka, Moscow, 1984) [in Russian].zbMATHGoogle Scholar
  9. 9.
    M. O. W. Richardson, and M. J. Wisheart, “Review of low-velocity impact properties of composite materials,” Composites, Part A 29, 1123–1131 (1996).CrossRefGoogle Scholar
  10. 10.
    P. O. Sjoblom, J. T. Hartness, and T. M. Cordell, “On low-velocity impact testing of composite materials,” J. Compos. Mater. 22, 30–52 (1988).CrossRefGoogle Scholar
  11. 11.
    K. N. Shivakumar, W. Elber, and W. Illg, “Prediction of low-velocity impact damage in thin circular laminates,” AIAA J. 23, 442–449 (1985).CrossRefzbMATHGoogle Scholar
  12. 12.
    W. J. Cantwell and J. Morton, “The impact resistance of composite materials – a review,” Composites 22, 347–362 (1991).CrossRefGoogle Scholar
  13. 13.
    P. Robinson and G. A. O. Davies, “Impactor mass and specimen geometry effects in low velocity impact of laminated composites,” Int. J. Impact Eng. 12, 189–207 (1992).CrossRefGoogle Scholar
  14. 14.
    G. A. O. Davies and P. Robinson, Predicting Failure by Debonding/Delamination (Imperial College Sci. Technol. Press, London, UK, 1992).Google Scholar
  15. 15.
    D. Liu and L. E. Malvern, “Matrix cracking in impacted glass/epoxy plates,” J. Compos. Mater. 21, 594–609 (1987).CrossRefGoogle Scholar
  16. 16.
    R. C. Batra, G. Gopinath, and J. Q. Zheng, “Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates,” Compos. Struct. 94, 540–547 (2012).CrossRefGoogle Scholar
  17. 17.
    D. Hull and Y. B. Shi, “Damage mechanism characterization in composite damage tolerance investigations,” Compos. Struct. 23, 99–120 (1993).CrossRefGoogle Scholar
  18. 18.
    S. A. Hitchen and R. M. J. Kemp, “The effect of stacking sequence on impact damage in a carbon fibre/epoxy composite,” Composites 26, 207–214 (1995).CrossRefGoogle Scholar
  19. 19.
    H. Kaczmerek, “Ultrasonic detection of damage in CFRPs,” J. Compos. Mater. 29, 59–95 (1995).CrossRefGoogle Scholar
  20. 20.
    M. V. Hosur, C. R. L. Murthy, T. S. Ramamurthy, and A. Shet, “Estimation of impact-induced damage in CFRP laminates through ultrasonic imaging,” NDT&E Int. 31, 359–374 (1998).CrossRefGoogle Scholar
  21. 21.
    I. B. Petrov, A. V. Favorskaya, A. V. Vasyukov, A. S. Ermakov, and K. A. Beklemysheva, “Numerical modeling of non-destructive testing of composites,” Proc. Comput. Sci. 96, 930–938 (2016).CrossRefGoogle Scholar
  22. 22.
    M. R. Abdullah and W. J. Cantwell, “The impact resistance of polypropylene-based fibre-metal laminates,” Compos. Sci. Technol. 66, 1682–1693 (2006).CrossRefGoogle Scholar
  23. 23.
    L. B. Vogelesang and A. Vlot, “Development of fibre metal laminates for advanced aerospace structures,” J. Mater. Process. Technol. 103, 1–5 (2000).CrossRefGoogle Scholar
  24. 24.
    G. B. Chai and P. Manikandan, “Low velocity impact response of fibre-metal laminates - a review,” Compos. Struct. 107, 363–381 (2014).CrossRefGoogle Scholar
  25. 25.
    I. B. Petrov and A. G. Tormasov, “Numerical study of oblique collision of a hard ball with a two-layer elastoplastic plate,” Mat. Model. 4 (3), 20–27 (1992).Google Scholar
  26. 26.
    B. Petrov and F. B. Chelnokov, “Numerical analysis of wave processes and fracture in layered targets,” Comput. Math. Math. Phys. 43, 1503–1519 (2003).MathSciNetzbMATHGoogle Scholar
  27. 27.
    J. B. Young, J. G. N. Landry, and V. N. Cavoulacos, “Crack growth and residual strength characteristics of two grades of glass-reinforced aluminium GLARE,” Compos. Struct. 27, 457–469 (1994).CrossRefGoogle Scholar
  28. 28.
    M. Papakyriacou, J. Schijve, and S. E. Stanzl-Tschegg, “Fatigue crack growth behaviour of fibre-metal laminate GLARE-1 and metal laminate 7475 with different blunt notches,” Fatigue Fract. Eng. Mater. Struct. 20, 1573–1584 (1997).CrossRefGoogle Scholar
  29. 29.
    W. Guocai and J.-M. Yang, “The mechanical behavior of GLARE laminates for aircraft structures,” J. Minerals 57, 72–79 (2005).Google Scholar
  30. 30.
    V. V. Antipov, O. G. Senatorova, N. F. Lukina, V. V. Sidelnikov, and V. V. Shestov, “Laminated metal-polymer composite materials,” Aviats. Mater. Tekhnol., No. 5, 226–230 (2012).Google Scholar
  31. 31.
    M. Sadighi, R. C. Alderliesten, and R. Benedictus, “Impact resistance of fiber-metal laminates: a review,” Int. J. Impact Eng. 49, 77–90 (2012).CrossRefGoogle Scholar
  32. 32.
    A. Vlot, Low-Velocity Impact Loading on Fibre Reinforced Aluminium Laminates (ARALL) and Other Aircraft Sheet Materials (Tech. Univ. Delft, Delft, Netherlands, 1991).Google Scholar
  33. 33.
    A. Vlot, “Impact loading on fibre metal laminates,” Int. J. Impact Eng. 18, 291–307 (1996).CrossRefGoogle Scholar
  34. 34.
    G. Caprino, G. Spataro, and S. del Luongo, “Low-velocity impact behaviour of fiberglass-aluminium laminates,” Composites, Part A 35, 605-616 (2004).CrossRefGoogle Scholar
  35. 35.
    S. Zhu and G. B. Chai, “Low-velocity impact response of fibre-metal laminates - experimental and finite element analysis,” Compos. Sci. Technol. 72, 1793–1802 (2012).CrossRefGoogle Scholar
  36. 36.
    S. Bernhardt, M. Ramulu, and A. Kobayashi, “Low-velocity impact response characterization of a hybrid titanium composite laminate,” J. Eng. Mater. Technol. 129, 220–226 (2007).CrossRefGoogle Scholar
  37. 37.
    D. A. Burianek, A. E. Giannakopoulos, and S. M. Spearing, “Modeling of facesheet crack growth in titanium-graphite hybrid laminates, Part 1,” Eng. Fracture Mech. 70, 775–798 (2003).CrossRefGoogle Scholar
  38. 38.
    D. A. Burianek and S. M. Spearing, “Modeling of facesheet crack growth in titanium-graphite hybrid laminates. Part 2: Experimental results,” Eng. Fracture Mech. 70, 799–812 (2003).CrossRefGoogle Scholar
  39. 39.
    D. W. Rhymer and W. S. Johnson, “Fatigue damage mechanisms in advanced hybrid titanium composite laminates,” Int. J. Fatigue 24, 995–1001 (2002).CrossRefGoogle Scholar
  40. 40.
    A. Vlot, “Impact properties of fibre metal laminates,” Compos. Eng. 3, 911–927 (1993).CrossRefGoogle Scholar
  41. 41.
    A. Seyed Yaghoubi, Y. Liu, and B. Liaw, “Stacking sequence and geometrical effects on low-velocity impact behaviors of GLARE 5 (3/2) fiber-metal laminates,” J. Thermoplast. Compos. Mater. 25, 223-247 (2011).CrossRefGoogle Scholar
  42. 42.
    Í. Y. Liu and B. Liaw, “Effects of constituents and lay-up configuration on drop-weight tests of fiber-metal laminates,” Appl. Compos. Mater. 17, 43–62 (2010).CrossRefGoogle Scholar
  43. 43.
    P. Cortes and W. J. Cantwell, “The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber-metal laminates,” J. Reinforced Plast. Comp. 23, 1615–1623 (2004).CrossRefGoogle Scholar
  44. 44.
    G. B. Chai and P. Manikandan, “A layer-wise behavioral study of metal based interply hybrid composites under low velocity impact load,” Compos. Struct. 117, 17–31 (2014).CrossRefGoogle Scholar
  45. 45.
    E. N. Kablov, V. V. Antipov, and O. G. Senatorova, “SIAL-1441 layered alumino-glass plastics and cooperation with Airbus and TU DELFT,” Tsvetn. Met., No. 9 (849), 50–53 (2013).Google Scholar
  46. 46.
    V. V. Antipov, O. G. Senatorova, N. F. Lukina, V. V. Sidelnikov, V. V. Shestov, O. V. Mitrakov, B. I. Popov, and A. S. Ershov, “High-strength crack-resistant lightweight layered alumos-glass plastics of SIAL class –a promising material for aircraft structures,” Tehnol. Legk. Splavov, No. 2, 28–31 (2009).Google Scholar
  47. 47.
    N. A. Nochovnaya, P. V. Panin, E. B. Alekseev, and K. A. Bokov, “Low-cost alloyed titanium alloys for metal-polymer laminates,” Tr. VIAM, No. 11, 18 (2014).Google Scholar
  48. 48.
    T. Zhang, Y. Yan, J. Li, and H. Luo, “Low-velocity impact of honeycomb sandwich composite plates,” J. Reinf. Plast. Compos. 35, 8–32 (2015).CrossRefGoogle Scholar
  49. 49.
    G. B. Chai and S. Zhu, “A review of low-velocity impact on sandwich structures,” Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 225, 207–230 (2011).Google Scholar
  50. 50.
    C. Scarponi, G. Briotti, R. Barboni, A. Marcone, and M. Iannone, “Impact testing on composite laminates and sandwich panels,” J. Compos. Mater. 30, 1873–1911 (1996).CrossRefGoogle Scholar
  51. 51.
    Yu. I. Dimitrienko and Yu. V. Yurin, “Multiscale modeling of thin multilayer composite plates with solitary defects,” Mat. Model. Chisl. Met., No. 12, 47–66 (2016).Google Scholar
  52. 52.
    B. R. Petersen, Finite Element Analysis of Composite Plate Impacted by a Projectile (Univ. Florida, 1985).Google Scholar
  53. 53.
    G. A. O. Davies, X. Zhang, G. Zhou, and S. Watson, “Numerical modelling of impact damage,” Composites 25, 342-350 (1994).CrossRefGoogle Scholar
  54. 54.
    V. Tita, J. J. de Carvalho, and D. Vandepitte, “Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches,” Compos. Struct. 83, 413–428 (2008).CrossRefGoogle Scholar
  55. 55.
    F. Hashagen and R. de Borst, “Numerical assessment of delamination in fibre metal laminates,” Comp. Methods Appl. Mech. Eng. 185, 141–159 (2000).CrossRefzbMATHGoogle Scholar
  56. 56.
    H. Nakatani, T. Kosaka, K. Osaka, and Y. Sawada, “Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact,” Composites, Part A 42, 772–781 (2011).CrossRefGoogle Scholar
  57. 57.
    Ì. J. Reiner, J. P. Torres, M. Veidt, and M. Heitzmann, “Experimental and numerical analysis of drop-weight low-velocity impact tests on hybrid titanium composite laminates,” J. Compos. Mater. 50, 3605–3617 (2016).CrossRefGoogle Scholar
  58. 58.
    A. Kursun, M. Senel, and H. M. Enginsoy, “Experimental and numerical analysis of low velocity impact on a preloaded composite plate,” Adv. Eng. Software 90, 41–52 (2015).CrossRefGoogle Scholar
  59. 59.
    F. D. Moriniere, R. C. Alderliesten, M. Y. Tooski, and B. Rinze, “Damage evolution in GLARE fibre-metal laminate under repeated low-velocity impact tests,” Centr. Eur. J. Eng. 2, 603–611 (2012).Google Scholar
  60. 60.
    G. R. Rajkumar, M. Krishna, H. N. Narasimha Murthy, S. C. Sharma, and K. R. Vishnu Mahesh, “Experimental investigation of low-velocity repeated impacts on glass fiber metal composites,” J. Mater. Eng. Perform. 21, 1485–1490 (2012).CrossRefGoogle Scholar
  61. 61.
    M. J. Hinton and A. S. Kaddour, “Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II,” J. Compos. Mater., No. 7, 925–966 (2013).Google Scholar
  62. 62.
    M. J. Hinton, A. S. Kaddour, and P. D. Soden, Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise (Elsevier, Amsterdam, London, 2004).Google Scholar
  63. 63.
    Y. P. Siow and P. W. Shim, “An experimental study of low velocity impact damage in woven fiber composites,” J. Compos. Mater. 32, 1178–1202 (1998).CrossRefGoogle Scholar
  64. 64.
    G. Dorey, P. Sigety, K. Stellbrink, and W. G. J. Hart, “Impact damage tolerance of carbon fibre and hybrid laminates,” RAE Tech. Rep. No. 87 057 (Royal Aerospace Establishment, Farnborough, UK, 1987).Google Scholar
  65. 65.
    H.-Y. T. Wu and G. S. Springer, “Impact induced stresses, strains, and delaminations in composite plates,” J. Compos. Mater. 22, 533–560 (1988).CrossRefGoogle Scholar
  66. 66.
    N. Sela and O. Ishai, “Interlaminar fracture toughness and toughening of laminated composite materials: a review,” Composites 20, 423–443 (1989).CrossRefGoogle Scholar
  67. 67.
    D. S. Cairns, P. J. Minuet, and M. G. Abdallah, “Theoretical and experimental response of composite laminates with delaminations loaded in compression,” Compos. Struct. 25, 113–120 (1993).CrossRefGoogle Scholar
  68. 68.
    A. T. Nettles and A. J. Hodge, “Compression-after-impact testing of thin composite materials,” in Proceedings of the 23rd International SAMPE Technical Conference (Soc. Advancement of Mater. Proc. Eng., Covina, CA, 1991), pp. 177–183.Google Scholar
  69. 69.
    M. N. Ghasemi Nejhad and A. Parvizi-Majidi, “Impact behaviour and damage tolerance of woven carbon fibre-reinforced thermoplastic composites,” Composites 21, 155–168 (1990).CrossRefGoogle Scholar
  70. 70.
    C. T. Sun, A. Dicken, H. F. Wu, “Characterization of impact damage in ARALL laminates,” Comp. Sci. Technol. 49, 139–144 (1993).CrossRefGoogle Scholar
  71. 71.
    E. V. González, P. Maimi, P. P. Camanho, A. Turon, and J. A. Mayugo, “Simulation of drop-weight impact and compression after impact tests on composite laminates,” Compos. Struct. 94, 3364–3378 (2012).CrossRefGoogle Scholar
  72. 72.
    G. Caprino, “Residual strength prediction of impacted CFRP laminates,” J. Compos. Mater. 18, 508–518 (1984).CrossRefGoogle Scholar
  73. 73.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Matter (Yanus-K, Moscow, 1996) [in Russian].Google Scholar
  74. 74.
    V. D. Ivanov, V. I. Kondaurov, I. B. Petrov, and A. S. Holodov, “Calculation of dynamic deformation and destruction of elastoplastic bodies by grid-characteristic methods,” Mat. Model. 2 (11), 10–29 (1990).MathSciNetGoogle Scholar
  75. 75.
    R. B. Bucinell, R. J. Nuismer, and J. L. Koury, “Response of composite plates to quasi-static impact events,” in Composite Materials: Fatigue and Fracture, Ed. by T. K. O’Brien, ASTM STP 1110 (Am. Soc. Test. Mater., 1991), pp. 528–549.Google Scholar
  76. 76.
    M. G. Stout, D. A. Koss, C. Liu, and J. Idasetima, “Damage development in carbon/epoxy laminates under quasi-static and dynamic loading,” Compos. Sci. Technol. 59, 2339–2350 (1999).CrossRefGoogle Scholar
  77. 77.
    D. Delfosse and A. Poursatip, “Energy-based approach to impact damage in CFRP laminates,” Composites 28, 647–655 (1997).CrossRefGoogle Scholar
  78. 78.
    S. Hong and D. Liu, “On the relationship between impact energy and delamination area,” Exp. Mech. 29, 115–120 (198).Google Scholar
  79. 79.
    K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Methods (Nauka, Moscow, 1988) [in Russian].zbMATHGoogle Scholar
  80. 80.
    V. I. Golubev and I. B. Petrov, “Experience of seismic responses fromo curvilinear geological boundaries modeling based on their explicit position description,” Tekhnol. Seismorazv. 4, 45–51 (2016).Google Scholar
  81. 81.
    I. B. Petrov and N. I. Khokhlov, “Modeling 3D seismic problems using high-performance computer systems,” Math. Models Comput. Simul. 6, 342–350 (2014).MathSciNetCrossRefGoogle Scholar
  82. 82.
    V. I. Golubev, I. E. Kvasov, and I. B. Petrov, “Influence of natural disasters on ground facilities,” Math. Models Comput. Simul. 4, 129–134 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, V. A. Miryakha, A. V. Sannikov, and V. I. Golubev, “Monitoring the state of the moving train by use of high performance systems and modern computation methods,” Math. Models Comput. Simul. 7, 51–61 (2015).CrossRefGoogle Scholar
  84. 84.
    K. A. Beklemysheva, A. A. Danilov, I. B. Petrov, V. Yu. Salamatova, Yu. V. Vassilevski, and A. V. Vasyukov, “Virtual blunt injury of human thorax: age-dependent response of vascular system,” Russ. J. Numer. Anal. Math. Model. 30, 259–268 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    P. I. Agapov, O. M. Belotserkovskii, and I. B. Petrov, “Numerical simulation of the consequences of a mechanical action on a human brain under a skull injury,” Comput. Math. Math. Phys. 46, 1629–1638 (2006).CrossRefGoogle Scholar
  86. 86.
    F. B. Chelnokov, “Explicit expression of grid-characteristic schemes for elasticity equations in 2D and 3D,” Mat. Model. 18 (6), 96–108 (2006).MathSciNetzbMATHGoogle Scholar
  87. 87.
    I. B. Petrov and A. V. Favorskaya, “Library of high-order interpolation methods on unstructured triangular and tetrahedral grids,” Inform. Tekhnol., No. 9, 30–32 (2011).Google Scholar
  88. 88.
    I. B. Petrov, A. V. Favorskaya, A. V. Vasyukov, A. S. Ermakov, K. A. Beklemysheva, A. O. Kazakov, and A. V. Novikov, “Numerical simulation of wave propagation in anisotropic media,” Dokl. Math. 90, 778–780 (2015).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations