Skip to main content
Log in

Simulation of Turbulent Mixing by the CABARET Algorithm for the Case of a Richtmyer–Meshkov Instability

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The CABARET algorithm constructed earlier by the authors for calculating the motion of multicomponent gas mixtures is used for the numerical simulation of a physical instability evolving when a shock wave passes through an initially quiescent interface of gaseous media with different physical properties, which is followed by the turbulization of the flow in the planar geometry. The following two problems are simulated: the passage of a shock wave through a rectangular subdomain filled with a heavy gas and the development of a Richtmyer–Meshkov instability during the passage of a shock wave through a sinusoidal media interface. The obtained evolution of the width of the mixing zone is compared with the experimental, theoretical, and numerical results of other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Commun. Pure Appl. Math. 13, 297–319 (1960).

    Article  MathSciNet  Google Scholar 

  2. E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave,” Sov. Fluid Dyn., No. 4, 101–104 (1969).

  3. K. A. Meyer and P. J. Blewett, “Numerical investigation of stability of a shock-accelerated interface between two fluids,” Phys. Fluids 15, 753–759 (1972).

    Article  Google Scholar 

  4. Q. Zhang and S. I. Sohn, “Nonlinear theory of unstable fluid mixing driven by shock wave,” Phys. Fluids 9, 1106–1124 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Sadot, L. Erez, U. Alon, D. Oren, and L. A. Levin, “Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability,” Phys. Rev. Lett. 80, 1654–1657 (1998).

    Article  Google Scholar 

  6. G. C. Orlicz, S. Balasubramanian, and K. P. Prestridge, “Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer,” Phys. Fluids, No. 25, 114101 (2013).

    Article  Google Scholar 

  7. B. D. Collins and J. W. Jacobs, “PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface,” J. Fluid Mech. 464, 113–136 (2002).

    Article  MATH  Google Scholar 

  8. B. E. Motl, “Experimental parameter study of the Richtmyer-Meshkov instability,” PhD Thesis (Univ. Wisconsin, Madison, 2008).

  9. E. Leinov, G. Malamud, et al., “Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions,” J. Fluid Mech. 626, 449–475 (2009).

    Article  MATH  Google Scholar 

  10. J.-F. Haas and B. Sturtevant, “Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities,” J. Fluid Mech. 181, 41–76 (1987).

    Article  Google Scholar 

  11. D. A. Holder et al., “Shock-tube experiments on Richtmyer-Meshkov instability growth using an enlarged double bump perturbation,” Laser Part. Beams 21, 411–418 (2003).

    Article  Google Scholar 

  12. R. Abgrall, “How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach,” J. Comput. Phys. 125, 150–160 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Latini, O. Schiling, and W. S. Don, “High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: comparison to experimental data and to amplitude growth model predictions,” Phys. Fluids 19, 024104 (2007).

    Article  MATH  Google Scholar 

  14. M. Latini, O. Schiling, and W. S. Don, “Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability,” J. Comput. Phys. 221, 805–36 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. F. Tishkin, V. V. Nikishin, I. V. Panov, and A. P. Favorskii, “Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability,” Mat. Model. 7 (5), 15–25 (1995).

    Google Scholar 

  16. P. Movahed and E. Johnsen, “Numerical simulations of the Richtmyer-Meshkov instability with reshock,” in Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, 2011.

  17. P. Movahed and E. Johnsen, “A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability,” J. Comput. Phys. 239, 166–186 (2013).

    Article  MathSciNet  Google Scholar 

  18. V. K. Tritschler, X. Y. Hu, S. Hickel, and N. A. Adams, “Numerical simulation of a Richtmyer-Meshkov instability with an adaptive central-upwind sixth-order WENO scheme,” Phys. Scr. 155, 014016 (2013).

    Article  Google Scholar 

  19. S. Ukai, K. Balakrishnan, and S. Menon, “Growth rate predictions of single- and multi-mode Richtmyer-Meshkov instability with reshock,” Shock Waves 21, 533–546 (2011).

    Article  Google Scholar 

  20. A. Yosef-Hai, O. Sadot, et al., “Late-time growth of the Richtmyer-Meshkov instability for different Atwood numbers and different dimensionalities,” Laser Part. Beams 21, 363–368 (2003).

    Article  Google Scholar 

  21. J. T. Morán-López, “Multicomponent Reynolds-averaged Navier-Stokes modeling of reshocked Richtmyer-Meshkov instability-induced turbulent mixing using the weighted essentially nonoscillatory method,” PhD Thesis (Univ. of Michigan, Ann Arbor, 2013).

  22. K. R. Bates, N. Nikiforakis, and D. Holder, “Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6,” Phys. Fluids 19, 036101 (2007).

    Article  MATH  Google Scholar 

  23. R. S. Lagumbay, “Modeling and simulation of multiphase/multicomponent flows,” PhD Thesis (Univ. of Colorado, Boulder, 2006).

  24. V. M. Goloviznin and A. A. Samarskii, “Finite difference approximation of convective transport equation with space splitting time derivative,” Mat. Model. 10 (1), 86–100 (1998).

    MathSciNet  MATH  Google Scholar 

  25. V. M. Goloviznin and A. A. Samarskii, “Some characteristics of finite difference scheme cabaret,” Mat. Model. 10 (1), 101–116 (1998).

    MathSciNet  MATH  Google Scholar 

  26. V. M. Goloviznin and S. A. Karabasov, “Nonlinear correction of Cabaret scheme,” Mat. Model. 10 (12), 107–123 (1998).

    MathSciNet  Google Scholar 

  27. V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-characteristic schemes with separated conservative and flux variables,” Mat. Model. 15 (9), 29–48 (2003).

    MathSciNet  MATH  Google Scholar 

  28. V. M. Goloviznin, “Balanced characteristic method for 1D systems of hyperbolic conservation laws in eulerian representation,” Mat. Model. 18 (11), 14–30 (2006).

    MathSciNet  Google Scholar 

  29. V. M. Goloviznin, V. N. Semenov, I. A. Korotkin, and S. A. Karabasov, “A novel computational method for modelling stochastic advection in heterogeneous media,” Transp. Porous Media 66, 439–456 (2007).

    Article  MathSciNet  Google Scholar 

  30. A. V. Danilin and A. V. Solov’ev, “A modification of the CABARET scheme for the computation of multicomponent gaseous flows,” Vychisl. Metody Programmir. 16, 18–25 (2015).

    Google Scholar 

  31. A. V. Danilin, A. V. Solov’ev, and A. M. Zaitsev, “A modification of the CABARET scheme for numerical simulation of multicomponent gaseous flows in two-dimensional domains,” Vychisl. Metody Programmir. 16, 436–445 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Danilin or A. V. Solovjev.

Additional information

Translated by I. Pertsovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilin, A.V., Solovjev, A.V. Simulation of Turbulent Mixing by the CABARET Algorithm for the Case of a Richtmyer–Meshkov Instability. Math Models Comput Simul 11, 247–255 (2019). https://doi.org/10.1134/S2070048219020054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048219020054

Keywords:

Navigation