Skip to main content
Log in

Numerical Modeling of Plasma Devices by the Particle-In-Cell Method on Unstructured Grids

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The paper considers methods and algorithms providing the basis for a computer program implementing an axial-symmetric electrostatic version of the particle-in-cell method on unstructured triangular grids. In the presented implementation, the Poisson equation is approximated using the finite volume method. A discrete analog of the Poisson equation is solved by the multigrid method. Charged particle trajectories are calculated using the Boris method. Methods for interpolating electrostatic fields on unstructured grids and obtaining the charge density in the computational domain are considered. Special attention is paid to the specifics of implementing these methods in axisymmetric geometry. The developed computer code is tested on the problem of a flat diode operating in the space charge mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. M. Penning, “Ein neues Manometer fur niedrige Gasdrucke, insbesondere zwischen 10-3 and 10-5 mm,” Physica 4, 71–75 (1937).

    Article  Google Scholar 

  2. F. M. Penning and J. H. A. Moubis, “Eine Neutronenrohre ohne Pumpvorrichtung,” Physica 4, 1190–1199 (1937).

    Article  Google Scholar 

  3. J. L. Rovey, B. P. Ruzic, and T. J. Houlahan, “Simple penning ion source for laboratory research and development applications,” Rev. Sci. Instrum. 78, 106101-1–106101-3 (2007).

  4. J. L. Rovey, “Design parameter investigation of a cold-cathode penning ion source for general laboratory applications,” Plasma Sources Sci. Technol. 17, 035009-1–035009-7 (2008).

  5. Yu. A. Berezin and V. A. Vshivkov, Particle-in-cell Method in Rarefied Plasma Dynamics (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  6. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (CRC, New York, 1987).

    MATH  Google Scholar 

  7. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).

    Google Scholar 

  8. Yu. N. Grigoriev, V. A. Vshivkov, and M. P. Fedoruk, Numerical 'Particle-In-Cell’ Methods: Theory and Applications (VSP, Utrecht, Boston, 2002; Sib. Otdel. RAN, Novosibirsk, 2004).

    Book  Google Scholar 

  9. Yu. P. Raizer and S. T. Surzhikov, “Magnetohydrodynamic description of collisionless plasma expansion in upper atmosphere,” AIAA J. 33, 486–490 (1995).

    Article  Google Scholar 

  10. S. T. Surzhikov, “Expansion of multi-charged plasma clouds into ionospheric plasma with magnetic field,” AIAA Paper No. 97–2361 (AIAA, 1997).

    Google Scholar 

  11. S. T. Surzhikov, “Collisionless expansion of a plasma with doubly charged ions in a rarefied magnetized plasma,” Plasma Phys. Rep. 26, 759–771 (2000).

    Article  Google Scholar 

  12. C. K. Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC,” IEEE Trans. Plasma Sci. 19, 65–85 (1991).

    Article  Google Scholar 

  13. Z. Donko, “Particle simulation methods for studies of low-pressure plasma sources,” Plasma Sources Sci. Technol. 20, 024001(2011).

    Article  Google Scholar 

  14. V. Vahedi and M. Surendra, “A Monte Carlo collision model for the particle in cell method: applications to argon and oxygen discharges,” Comput. Phys. Commun. 87, 179–198 (1995).

    Article  Google Scholar 

  15. V. Vahedi, G. DiPeso, C. K. Birdsall, M. A. Lieberman, and T. D. Rognlien, “Capacitive RF discharge modelled by particle-in-cell Monte Carlo simulation. I: Analysis of numerical techniques,” Plasma Sources Sci. Technol. 2, 261–272 (1993).

    Article  Google Scholar 

  16. V. Vahedi, C. K. Birdsall, M. A. Lieberman, G. DiPeso, and T. D. Rognlien, “Capacitive RF discharge modelled by particle-in-cell Monte Carlo simulation. II: Comparisons with laboratory measurements of electron energy distribution function,” Plasma Sources Sci. Technol. 2, 273–278 (1993).

    Article  Google Scholar 

  17. H. Burau, R. Widera, W. Honig, G. Juckeland, A. Debus, T. Kluge, U. Schramm, T. E. Cowan, R. Sauerbrey, and M. Bussmann, “PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster,” IEEE Trans. Plasma Sci. 38, 2831–2839 (2010).

    Article  Google Scholar 

  18. I. A. Surmin, S. I. Bastrakov, E. S. Efimenko, A. A. Gonoskov, A. V. Korzhimanov, and I. B. Meyerov, “Particle-in-cell laser-plasma simulation on xeon phi coprocessors,” Comput. Phys. Commun. 202, 204–210 (2016).

    Article  Google Scholar 

  19. M. Pfeiffer, A. Mirza, C.-D. Munz, and S. Fasoulas, “Two statistical particle split and merge methods for particle-in-cell codes,” Comput. Phys. Commun. 191, 9–24 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. B. Jacobs and J. S. Hesthaven, “High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids,” J. Comput. Phys. 214, 96–121 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed. (Pearson Education, Harlow, 2007).

    Google Scholar 

  22. R. P. Fedorenko, “A relaxation method for solving elliptic difference equations,” Zh. Vychisl. Mat. Mat. Fiz. 1, 922–927 (1961).

    MATH  Google Scholar 

  23. R. P. Fedorenko, “The speed of convergence of one iterative process,” Zh. Vychisl. Mat. Mat. Fiz. 4, 559–564 (1964).

    Google Scholar 

  24. D. J. Mavriplis, “Multigrid techniques for unstructured meshes,” Report NASA-CR-195070 (NASA, Hampton, 1995).

    Google Scholar 

  25. I. E. Sutherland and G. W. Hodgman, “Reentrant polygon clipping,” Commun. ACM 17, 32–42 (1974).

    Article  MATH  Google Scholar 

  26. J. D. Ramshaw, “Conservative rezoning algorithm for generalized two-dimensional meshes,” J. Comput. Phys. 59, 193–199 (1985).

    Article  MATH  Google Scholar 

  27. D. Elbery, Intersection of Convex Objects: The Method of Separating Axes (Geometric Tools, Redmond WA, 2008).

    Google Scholar 

  28. G. L. Delzanno and E. Camporeale, “On particle movers in cylindrical geometry for particle-in-cell simulations,” J. Comput. Phys. 253, 259–277 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  29. D. G. Holmes and S. D. Connell, “Solution of the 2-D Navier-Stokes equations on unstructured adaptive grids,” AIAA Paper No. 89-1392 (AIAA, 1989).

  30. R. D. Rausch, J. T. Batina, and H. T. Y. Yang, “Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computation,” AIAA Paper No. 1991-1106 (AIAA, 1991).

  31. A. M. Spirkin, “A three-dimensional particle-in-cell methodology on unstructured Voronoi grids with applications to plasma microdevices,” PhD Thesis (Worcester Polytech. Inst., Worcester, 2006).

    Google Scholar 

  32. K. Nanby, “Probability theory of electron-molecules, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and gases,” IEEE Trans. Plasma Sci. 28, 971–990 (2000).

    Article  Google Scholar 

  33. B. P. Bromley, “Computational modeling of the axial-cylindrical inertial electrostatic confinement fusion neutron generator,” PhD Thesis (Univ. Illinois at Urbana-Champaign, Urbana-Champaign, 2001).

    Google Scholar 

  34. J. W. Luginsland, Y. Y. Lau, and R. M. Gilgenbach, “Two-dimensional Child-Langmuir law,” Phys. Rev. Lett. 77, 4668–4670 (1996).

    Article  Google Scholar 

  35. Y. Li, H. Wang, C. Liu, and J. Sun, “Two-dimensional Child-Langmuir law of planar diode with finite-radius emitter,” Appl. Surf. Sci. 251, 19–23 (2005).

    Article  Google Scholar 

  36. Y. Y. Lau, “Simple theory of the two-dimensional Child-Langmuir law,” Phys. Rev. Lett. 87, 278301-1–278301-3 (2001).

  37. G. Jaffe, “On the currents carried by electrons of uniform initial velocity,” Phys. Rev. 65, 91–98 (1944).

    Article  Google Scholar 

  38. K. G. Kostov and J. J. Barroso, “Space-charge-limited current in cylindrical diodes with finite-length emitter,” Phys. Plasmas 9, 1039–1042 (2002).

    Article  Google Scholar 

  39. J. J. Watrous, J. W. Lugisland, and G. E. Sasser III, “An improved space-charge-limited emission algorithm for use in particle-in-cell codes,” Phys. Plasmas 8, 289–296 (2001).

    Article  Google Scholar 

  40. B. Ragan-Kelley, J. Verboncoueur, and Y. Feng, “Two-dimensional axisymmetric Child-Langmuir scaling law,” Phys. Plasmas 16, 103102-1–103102-6 (2009).

  41. S. V. Irishkov, “Fully kinetic model of plasma dynamics in discharge of plasma thruster with closed electron drift,” Mat. Model. 18 (6), 70–84 (2006).

    MATH  Google Scholar 

  42. A. Dikalyuk and S. T. Surzhikov, “The modeling of dust particles in a normal glow discharge: the comparison of two charged models,” AIAA Paper No. 2010-4310 (AIAA, 2010).

  43. L. V. In’kov, “Calculation of selfconsistent electrostatic field in kinetic simulation of dusty plasma,” Mat. Model. 15 (7), 46–54 (2003).

    MathSciNet  MATH  Google Scholar 

  44. Iu. E. Kreindel and A. S. Ionov, “Characteristic features of low-pressure pressure discharges in penning tubes,” Sov. Tech. Phys. 9, 930 (1964).

    Google Scholar 

  45. N. V. Mamedov, N. N. Shchitov, and I. A. Kanshin, “Investigation of the dependency of penning ion source operational characteristics on its geometric parameters,” Fiz.-Khim. Kinet. Gaz. Din. 16 (4), 1 (2015).

    Google Scholar 

  46. V. G. Markov, D. E. Prokhorovich, A. G. Sadilkin, and N. N. Shchitov, “Determination of the corpuscular emission energy characteristics for the ion sources of gas-filled neutron tubes,” Usp. Prikl. Fiz. 1, 23–29 (2013).

    Google Scholar 

  47. A. N. Dolgov, V. G. Markov, A. A. Okulov, D. E. Prokhorovich, A. G. Sadilkin, D. I. Yurkov, I. V. Vizgalov, V. I. Rashchikov, N. V. Mamedov, and D. V. Kolodko, “Integrated approach in the investigation of corpuscular beam dynamics in ion-optical system of the neutron tube,” Usp. Prikl. Fiz. 2, 267–272 (2014).

    Google Scholar 

  48. D. A. Storozhev and S. T. Surzhikov, “Numerical simulation of the two-dimensional structure of glow discharge in molecular nitrogen in light of vibrational kinetics,” High Temp. 53, 307–318 (2015).

    Article  Google Scholar 

  49. D. A. Storozhev, “Numerical simulation of the kinetics of ionization and dissociations of hydrogen in penning discharge plasma in the LTE approach,” Fiz.-Khim. Kinet. Gaz. Din. 15 (3), 3 (2014).

    Google Scholar 

  50. S. T. Surzhikov, “Application of the modified drift-diffusion theory to study of the two-dimensional structure of the penning discharge,” AIAA Paper No. 2015-1832 (AIAA, 2015).

  51. S. T. Surzhikov, “The two-dimensional structure of penning discharge in a cylindrical chamber with axial magnetic field at pressure of about 1 torr,” Tech. Phys. Lett. 43, 169(2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dikalyuk.

Additional information

Original Russian Text © A.S. Dikalyuk, S.E. Kuratov, 2017, published in Matematicheskoe Modelirovanie, 2017, Vol. 29, No. 9, pp. 33–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikalyuk, A.S., Kuratov, S.E. Numerical Modeling of Plasma Devices by the Particle-In-Cell Method on Unstructured Grids. Math Models Comput Simul 10, 198–208 (2018). https://doi.org/10.1134/S2070048218020059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048218020059

Keywords

Navigation