Skip to main content

A model of information warfare in a society under a periodic destabilizing effect

Abstract

A model of information warfare in a society when one of the parties periodically destabilizes the system by a short-term jump-wise increase in the intensity of the propaganda in the media is analyzed. The model has the form of two nonlinear ordinary differential equations with a periodic discontinuous right-hand side. The asymptotical solution to the periodic solutions are constructed for the case of low-intensity dissemination of information through interpersonal communication. The transient regime is investigated numerically.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. A. Samarskii and A. P. Mikhailov, Principles of Mathematical Modelling: Ideas, Methods, Examples (Fizmatlit, Moscow, 2006; CRC, Boca Raton, FL, 2010).

    MATH  Google Scholar 

  2. 2.

    A. P. Mikhailov and N. V. Kliusov, “On properties of simplest mathematical models of informational threat propagation,” in Proceedings of the Seminar on Mathematical Modelling of Social Processes (Maks Press, Moscow, 2002), No. 4, pp. 115–123.

    Google Scholar 

  3. 3.

    A. P. Mikhailov and K. V. Izmodenova, “On optimal control of information spreading process,” Mat. Model. 17 (5), 67–76 (2005).

    MathSciNet  MATH  Google Scholar 

  4. 4.

    A. P. Mikhailov and K. V. Izmodenova, “On optimal control in mathematical model of information propagation,” in Proceedings of the Seminar on Mathematical Modelling of Social Processes (Maks Press, Moscow, 2004), No. 6.

    Google Scholar 

  5. 5.

    A. P. Mikhailov, A. P. Petrov, N. A. Marevtseva, and I. V. Tretyakova, “Development of a model of information dissemination in society,” Math. Models Comput. Simul. 6, 535–541 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    N. A. Marevtseva, “Simplest mathematical models of information confrontation,” in Mathematical Modelling and Informational Technologies, Proceedings of the All-Russia Scientific Young Scientists Schools (Yuzh. Fed. Univ., Rostov-na-Donu, 2009), Vol. 8, pp. 354–363.

    Google Scholar 

  7. 7.

    A. P. Mikhailov and N. A. Marevtseva, “Models of information warfare,” Math. Models Comput. Simul. 4, 251–259 (2011). doi 10.1134/S2070048212030076

    Article  MATH  Google Scholar 

  8. 8.

    A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, and N. A. Marevtseva, “Mathematical modeling of information warfare in a society,” Mediterranean J. Soc. Sci. 6 (5, S2), 27–35 (2015).

    MATH  Google Scholar 

  9. 9.

    A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, and N. A. Marevtseva, “Mathematical modelling of informational confrontation in society,” in Proceedings of the International Economical Symposium 2015, Dedicated to 75 Years of Economic Department of SPb. State Univ. (Skifiia-print, St. Petersburg, 2015), pp. 293–303. http://econconf. spbu.ru/files/Symposium_Sbornik_ Statey.pdf.

    Google Scholar 

  10. 10.

    D. J. Daley and D. G. Kendall, “Stochastic rumors,” J. Inst. Math. Appl. 1, 42–55 (1964).

    Article  Google Scholar 

  11. 11.

    D. P. Maki and M. Thompson, Mathematical Models and Applications (Prentice-Hall, Englewood Cliffs, 1973).

    Google Scholar 

  12. 12.

    Guanghua Chen,_H. Shen, T. Ye, G. Chen, and N. Kerr, “A kinetic model for the spread of rumor in emergencies,” Discrete Dyn. Nat. Soc. 2013, 605854 (2013). doi 10.1155/2013/605854

    MathSciNet  Google Scholar 

  13. 13.

    V. A. Shvedovskii, “Simulation of information propagation in adjacent social groups,” in Mathematical Method in Sociological Study (Nauka, Moscow, 1981), pp. 207–214 [in Russian].

    Google Scholar 

  14. 14.

    A. P. Petrov, A. I. Maslov, and N. A. Tsaplin, “Modeling position selection by individuals during information warfare in society,” Math. Models Comput. Simul. 8, 401–408 (2016).

    Article  Google Scholar 

  15. 15.

    N. Rashevsky, “Outline of a physico-mathematical theory of excitation and inhibition,” Protoplasma 20, 42 (1933).

    Article  Google Scholar 

  16. 16.

    N. Rashevsky, Mathematical Biophysics: Physico-Mathematical Foundations of Biology (Univ. Chicago Press, Chicago, 1938).

    MATH  Google Scholar 

  17. 17.

    M. Nekovee, Y. Moreno, G. Bianconi, and M. Marsili, “Theory of rumour spreading in complex social networks,” Physica A 374, 457–470 (2007).

    Article  Google Scholar 

  18. 18.

    D. A. Gubanov, D. A. Novikov, and A. G. Chkhartishvili, Social Networks: Models of Informational Influence, Control and Confrontation (Fizmatlit, Moscow, 2010) [in Russian].

    MATH  Google Scholar 

  19. 19.

    D. Yanagizawa-Drott, “Propaganda and conflict: evidence from the Rwandan genocide,” Quart. J. Economics 129, 1947–1994 (2014). doi 10.1093/qje/qju020

    Article  Google Scholar 

  20. 20.

    F. M. Bass, “A new product growth for model consumer durables,” Manage. Sci. 15, 215–227 (1969).

    Article  MATH  Google Scholar 

  21. 21.

    L. L. Delitsin, Quantitative Models of Innovation Propagation in the Field of Information and Telecommunication Technologies (MGUKI, Moscow, 2009) [in Russian].

    Google Scholar 

  22. 22.

    A. P. Mikhailov, A. P. Petrov, M. I. Kalinichenko, and S. V. Polyakov, “Modeling the simultaneous distribution of legal and counterfeit copies of innovative products,” Math. Models Comput. Simul. 6, 25–31 (2014). doi 10.1134/S2070048214010116

    Article  MATH  Google Scholar 

  23. 23.

    G. B. Pronchev and V. I. Muravev, “Social networks as a factor of transition of Russia to innovative development,” Sociologiya, No. 3, 36–56 (2011).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. G. Proncheva.

Additional information

Original Russian Text © A.P. Mikhailov, A.P. Petrov, O.G. Proncheva, N.A. Marevtseva, 2017, published in Matematicheskoe Modelirovanie, 2017, Vol. 29, No. 2, pp. 23–32.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, A.P., Petrov, A.P., Proncheva, O.G. et al. A model of information warfare in a society under a periodic destabilizing effect. Math Models Comput Simul 9, 580–586 (2017). https://doi.org/10.1134/S2070048217050106

Download citation

Keywords

  • mathematical modeling
  • information warfare
  • media propaganda
  • interpersonal communication
  • differential equations