Skip to main content
Log in

A kinetic model for magnetogasdynamics

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

In this work the equations of ideal magnetogasdynamics are derived based on the introduced local complex Maxwellian distribution function. Using this kinetic model, we obtain the analog of a quasi-dynamic system of equations for magnetogasdynamics, including dissipative processes. The resulting model and the algorithm of its solution have been tested by applying them to a number of well-known problems. The given algorithm can be easily adapted to an architecture of high performance systems with extramassive parallelism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations (CIMNE, Barcelona, 2008).

    MATH  Google Scholar 

  2. A. A. Davydov, B. N. Chetverushkin, and E. V. Shil’nikov, “Simulating flows of incompressible and weakly compressible fluids on multicore hybrid computer systems,” Comput. Math. Math. Phys. 50, 2157–2166 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. N. Chetverushkin, “Kinetic models for solving continuum mechanics problems on supercomputers,” Math. Models Comput. Simul. 7, 531–539 (2015).

    Article  MathSciNet  Google Scholar 

  4. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, Cambridge, 1991).

    MATH  Google Scholar 

  5. B. N. Chetverushkin, N. D’Ascenzo, and V. I. Saveliev, “Kinetically consistent magnetogasdynamics equations and their use in supercomputer computations,” Dokl. Math. 90, 495–498 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Chetverushkin, N. D’Ascenzo, S. Ishanov, and V. Saveliev, “Hyperbolic type explicit kinetic scheme of magneto gas dynamics for high performance computing systems,” Russ. J. Num. Anal. Math. Model. 30, 27–36 (2015).

    MathSciNet  MATH  Google Scholar 

  7. N. D’Ascenzo, V. I. Saveliev, and B. N. Chetverushkin, “On an algorithm for solving parabolic and elliptic equations,” Comput. Math. Math. Phys. 55, 1290–1297 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. N. Chetverushkin, N. D’Ascenzo, and V. I. Saveliev, “Three-level scheme for solving parabolic and elliptic equations,” Dokl. Math. 91, 341–343 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2012; CRC, Boca Raton, FL, 2000).

    MATH  Google Scholar 

  10. B. N. Chetverushkin and V. I. Saveliev, “Kinetic models and high performance computing,” KIAM Preprint No. 79 (Keldysh Inst. Appl. Math. RAS, Moscow, 2015).

    Google Scholar 

  11. S. M. Repin and B. N. Chetverushkin, “Estimates of the difference between approximate solutions of the Cauchy problems for the parabolic diffusion equation and a hyperbolic equation with a small parameter,” Dokl. Math. 88, 417–420 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. E. Myshetskaya and V. F. Tishkin, “Estimates of the hyperbolization effect on the heat equation,” Comput. Math. Math. Phys. 55, 1270–1275 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. D. Surnachev, V. F. Tishkin, and B. N. Chetverushkin, “On conservation laws for hyperbolized equations,” Differ. Equations 52, 817–823 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Balsara, “Divergence-free adaptive mesh refinement for magnetohydrodynamics,” J. Comput. Phys. 174, 614 (2001).

    Article  MATH  Google Scholar 

  15. T. G. Elizarova and M. V. Popov, “Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations,” Comput. Math. Math. Phys. 55, 1330–1345 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. D. S. Balsara, “Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics,” J. Comp. Phys. 228, 5040–5056 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. A. Orszag and C.-M. Tang, “Small-scale structure of two-dimensional magnetohydrodynamic turbulence,” J. Fluid Mech. 90, 129–143 (1979).

    Article  Google Scholar 

  18. J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon, “Athena: a new code for astrophysical MHD,” Astrophys. J. Suppl. 178, 137 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Chetverushkin.

Additional information

Original Russian Text © B. Chetverushkin, N. D’Ascenzo, A. Saveliev, V. Saveliev, 2017, published in Matematicheskoe Modelirovanie, 2017, Vol. 29, No. 3, pp. 3–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverushkin, B., D’Ascenzo, N., Saveliev, A. et al. A kinetic model for magnetogasdynamics. Math Models Comput Simul 9, 544–553 (2017). https://doi.org/10.1134/S2070048217050039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048217050039

Keywords

Navigation