Application of functional integrals to stochastic equations

Abstract

Representing a probability density function (PDF) and other quantities describing a solution of stochastic differential equations by a functional integral is considered in this paper. Methods for the approximate evaluation of the arising functional integrals are presented. Onsager–Machlup functionals are used to represent PDF by a functional integral. Using these functionals the expression for PDF on a small time interval Δt can be written. This expression is true up to terms having an order higher than one relative to Δt. A method for the approximate evaluation of the arising functional integrals is considered. This method is based on expanding the action along the classical path. As an example the application of the proposed method to evaluate some quantities to solve the equation for the Cox–Ingersol–Ross type model is considered.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. S. Kulyabov and A. V. Demidova, “Introduction of self-consistent term in stochastic population model equation,” Vestn. RUDN, Ser. Mat. Inform. Fiz., No. 3, 69–78 (2012).

    Google Scholar 

  2. 2.

    A. V. Demidova, “The equations of population dynamics in the form of stochastic differential equations,” Vestn. RUDN, Ser. Mat. Inform. Fiz., No. 1, 67–76 (2013).

    Google Scholar 

  3. 3.

    P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992).

    Google Scholar 

  4. 4.

    D. F. Kuznetsov, Numerical Integration of Stochastic Differential Equations (SPb Gos. Politekh. Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  5. 5.

    H. Risken, The Fokker-Plank Equation: Methods of Solution and Applications (Springer, Berlin, 1984).

    Google Scholar 

  6. 6.

    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  7. 7.

    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics Polymer Physics, and Financial Markets (World Scientific, Singapore, 2004).

    Google Scholar 

  8. 8.

    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1976; Wiley, New York, 1980).

    Google Scholar 

  9. 9.

    J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View (Springer, Berlin, Heidelberg, New York, 1981).

    Google Scholar 

  10. 10.

    A. D. Egorov, E. P. Zhidkov, and Yu. Yu. Lobanov, An Introduction to the Theory and Applications of Functional Integration (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  11. 11.

    F. Langouche, D. Roekaerts, and E. Tirapegui, Functional Integration and Semi-Classical Expansions (D. Reidel, Dordrecht, 1982).

    Google Scholar 

  12. 12.

    H. S. Wio, Application of Path Integration to Stochastic Process: An Introduction (World Scientific, Singapore, 2013).

    Google Scholar 

  13. 13.

    L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).

    Article  Google Scholar 

  14. 14.

    J. W. Lamperti, “Semi-stable stochastic processes,” Trans. Am. Math. Soc. 104, 62–78 (1962).

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon, Oxford, 1965).

    Google Scholar 

  16. 16.

    A. D. Egorov, P. I. Sobolevskii, and L. A. Yanovich, Approximate Methods for Continual Integrals Computation (Nauka Tekhnika, Moscow, 1985) [in Russian].

    Google Scholar 

  17. 17.

    A. D. Egorov, P. I. Sobolevsky, and L. A. Yanovich, Functional Integrals: Approximate Evaluation and Applications (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  18. 18.

    V. I. Krylov, V. V. Bobkov, and P. I. Monastyrnyi, Numerical Methods of Higher Mathematics (Vysheish. Shkola, Minsk, 1975), Vol. 2 [in Russian].

    Google Scholar 

  19. 19.

    C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences, Springer Series in Synergetics (Springer, New York, 1986).

    Google Scholar 

  20. 20.

    A. V. Demidova, M. N. Gevorkian, A. D. Egorov, D. S. Kuliabov, A. V. Korolkova, and L. A. Sevastianov, “Influence of stochastization on one-step models,” Vestn. RUDN, Ser. Mat. Inform. Fiz., No. 1, 71–85 (2014).

    Google Scholar 

  21. 21.

    G. A. Gottwald and J. Harlim, “The role of additive and multiplicative noise in filtering complex dynamical systems,” Proc. R. Soc. A: Math., Phys. Eng. Sci. 469, 20130096 (2013).

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. A. Ayryan.

Additional information

Original Russian Text © E.A. Ayryan, A.D. Egorov, D.S. Kulyabov, V.B. Malyutin, L.A. Sevastyanov, 2016, published in Matematicheskoe Modelirovanie, 2016, Vol. 28, No. 11, pp. 113–125.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayryan, E.A., Egorov, A.D., Kulyabov, D.S. et al. Application of functional integrals to stochastic equations. Math Models Comput Simul 9, 339–348 (2017). https://doi.org/10.1134/S2070048217030024

Download citation

Keywords

  • stochastic differential equations
  • Onsager-Machlup functionals
  • functional integrals