Skip to main content
Log in

Correlation between the discontinuous Galerkin method and MUSCL-type schemes

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The discontinuous Galerkin method is compared with MUSCL-type schemes. The description and the analysis of the schemes are presented by using the solution of the linear advection equation as an example. The techniques for a generalization of these schemes to the case of solving nonlinear and multidimensional problems are considered. The correlation between the discontinuous Galerkin method and MUSCL-type schemes, as well as their distinctive features, are revealed. The criteria of the accuracy and the efficiency of the schemes as applied to problems of various classes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Cockburn, G. E. Karniadakis, and C.-W. Shu, “The development of discontinuous Galerkin methods,” in Discontinuous Galerkin Methods. Theory, Computation and Applications, vol. 11 of Lecture Notes in Computational Science and Engineering (Springer, 2000), pp. 3–50.

    Google Scholar 

  2. B. Cockburn and C.-W. Shu, “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,” J. Sci. Comput. 16, 173–261 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Dumbser, “Building blocks for arbitrary high order discontinuous Galerkin schemes,” J. Sci. Comput. 27, 215–230 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Krivodonova, “Limiters for high-order discontinuous Galerkin methods,” J. Comput. Phys. 226, 879–896 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. X. Zhong and C.-W. Shu, “A simple weighted nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods,” J. Comput. Phys. 232, 397–415 (2013).

    Article  MathSciNet  Google Scholar 

  6. M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Application of the RKDG method for gas dynamics problems,” Math. Models Comput. Simul. 6, 397–407 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Cheng and C.-W. Shu, “Superconvergence and time evolution of discontinuous Galerkin finite element solutions,” J. Comput. Phys. 227, 9612–9627 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. X. Meng, C.-W. Shu, Q. Zhang, and B. Wu, “Superconvergence of discontinuous Galerkin method for scalar nonlinear conservation laws in one space dimension,” SIAM J. Numer. Anal. 50, 2336–2356 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. van Leer, “Towards the ultimate conservative difference scheme. I. The quest for monotonicity,” Lect. Notes Phys. 18, 163–168 (1973).

    Article  MATH  Google Scholar 

  10. B. van Leer, “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme,” J. Comput. Phys. 14, 361–370 (1974).

    Article  MATH  Google Scholar 

  11. B. van Leer, “Towards the ultimate conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow,” J. Comput. Phys. 23, 263–275 (1977).

    Article  MATH  Google Scholar 

  12. B. van Leer, “Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection,” J. Comput. Phys. 23, 276–299 (1977).

    Article  MATH  Google Scholar 

  13. B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32, 101–136 (1979).

    Article  Google Scholar 

  14. V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics,” J. Comput. Phys. 230, 2384–2390 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49, 357–393 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  16. P. L. Roe, “Some contributions to the modelling of discontinuous flows,” in Proceedings of the AMS/SIAM Seminar on Large Scale Computation in Fluid Mechanics, San Diego, 1983.

    Google Scholar 

  17. R. F. Warming and R. W. Beam, “Upwind second order difference scheme with applications in aerodynamic flows,” AIAA J. 3, 176–189 (1968).

    MathSciNet  Google Scholar 

  18. P. D. Lax and B. Wendroff, “Systems of Conservation Laws,” Pure Appl. Math. 13, 217–237 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. E. Fromm, “A method for reducing dispersion in convective difference schemes,” J. Comput. Phys. 3, 176–189 (1968).

    Article  MATH  Google Scholar 

  20. C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” J. Comput. Phys. 77, 439–471 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  21. G. D. van Albada, B. van Leer, and W. W. Roberts, “A comparative study of computational methods in cosmic gas dynamics,” Astron. Astrophys. 108, 76–84 (1982).

    MATH  Google Scholar 

  22. A. V. Rodionov, “Monotonic scheme of the second order of approximation for the continuous calculation of non-equilibrium flows,” USSR Comput. Math. Math. Phys. 27, 175–180 (1987).

    Article  MATH  Google Scholar 

  23. H. T. Huynh, “An upwind moment scheme for conservation laws,” in Computational Fluid Dynamics 2004 (Springer, Berlin, 2006), pp. 761–766.

    Chapter  Google Scholar 

  24. Y. Suzuki and B. van Leer, “An analysis of the upwind moment scheme and its extension to systems of nonlinear hyperbolic-relaxation equations,” AIAA Paper No. 2007-4468 (2007).

    Google Scholar 

  25. M. Ya. Ivanov and A. N. Kraiko, “The approximation of discontinuous solutions by using through calculation difference schemes,” USSR Comput. Math. Math. Phys. 18, 259–262 (1978).

    Article  Google Scholar 

  26. V. V. Ostapenko, “Convergence of finite-difference schemes behind a shock front,” Comput. Math. Math. Phys. 37, 1161–1172 (1997).

    MathSciNet  MATH  Google Scholar 

  27. O. A. Kovyrkina and V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes,” Math. Models Comput. Simul. 6, 183–191 (2014).

    Article  MathSciNet  Google Scholar 

  28. C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes II,” J. Comput. Phys. 83, 32–78 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  29. H. T. Huynh, “Accurate upwind methods for the Euler equations,” SIAM J. Numer. Anal. 32, 1565–1619 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Suresh and H. T. Huynh, “Accurate monotonicity-preserving schemes with Runge-Kutta time step-ping,” J. Comput. Phys. 136, 83–99 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. V. Rodionov, “A comparison of the CABARET and MUSCL-type schemes,” Math. Models Comput. Simul. 6, 203–225 (2014).

    Article  MathSciNet  Google Scholar 

  32. P. R. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks,” J. Comput. Phys. 54, 115–173 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. V. Rodionov and I. Yu. Tagirova, “Artificial viscosity in Godunov’ type schemes as a method of “carbuncle” instability suppression,” VANT, Ser.: Mat. Mod. Fiz. Proc., No. 2, 3–11 (2015).

    Google Scholar 

  34. I. Yu. Tagirova and A. V. Rodionov, “Application of artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes,” Mat. Model. 27 (10), 47–64 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rodionov.

Additional information

Original Russian Text © A.V. Rodionov, 2015, published in Matematicheskoe Modelirovanie, 2015, Vol. 27, No. 10, pp. 96–116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionov, A.V. Correlation between the discontinuous Galerkin method and MUSCL-type schemes. Math Models Comput Simul 8, 285–300 (2016). https://doi.org/10.1134/S207004821603008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004821603008X

Keywords

Navigation