Advertisement

On the accuracy of numerical simulation of the boundary layer separation on a finite-width wedge

  • S. M. BosnyakovEmail author
  • A. A. Babulin
  • V. V. Vlasenko
  • M. F. Engulatova
  • S. V. Matyash
  • S. V. Mikhaylov
Article
  • 23 Downloads

Abstract

This work is devoted to the validation of modern differential models of turbulence for the calculation of separation in a supersonic flow around the compression wedge. Use is made of the data of experiments for the 25° wedge made by A.A. Zheltovodov at the Khristianovich Institute of Theoretical and Applied Mechanics (ITAM), Siberian Branch (SB), Russian Academy of Sciences (RAS). These data are compared to the results of the three-dimensional and two-dimensional calculations by the use of several differential models of turbulence. A modification of the SST model is proposed that yields an improvement in the quality of the description of the separation zone. The three-dimensional structure of the separation on the wedge is analyzed.

Keywords

supersonic flow boundary layer separation compression wedge turbulence model validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Settles and L. J. Dodson, “Supersonic and hypersonic shock/boundary layer interaction database,” AIAA J. 32, 1377–1383 (1994).CrossRefGoogle Scholar
  2. 2.
    A. A. Zheltovodov, “Shock waves/turbulent boundary-layer interactions–fundamental studies and applications,” AIAA Paper No. 96-1977 (1996).Google Scholar
  3. 3.
    M. S. Loginov, N. F. Adams, and A. A. Zheltovodov, “Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction,” J. Fluid Mech. 565, 135–169 (2006).CrossRefzbMATHGoogle Scholar
  4. 4.
    ANSYS 14.5 Capabilities Brochure (ANSYS Inc., 2013).Google Scholar
  5. 5.
    I. A. Brailko, V. E. Makarov, Yu. P. Fedorchenko, and V. A. Shorstov, “COBRA program complex, v2.5,” State Registration Certificate of Software No. 2010613209 (2010).Google Scholar
  6. 6.
    S. M. Bosnyakov, V. V. Vlasenko, M. F. Engulatova, N. A. Zlenko, S. V. Matiash, and S. V. Mikhaylov, “EWT program complex,” State Registration Certificate of Software No. 2008610227 (2008).Google Scholar
  7. 7.
    D. D. Knight and A. A. Zheltovodov, “Ideal-gas shock wave–turbulent boundary-layer interactions (STBLIs) in supersonic flows and their modeling: two-dimensional interactions,” in Shock Wave Boundary-Layer Interactions, Ed. by H. Babinsky and J. Harvey (Cambridge Univ. Press, New York, 2011), pp. 137–201.CrossRefGoogle Scholar
  8. 8.
    W. W. Liou, G. Huang, and T. H. Shih, “Turbulence model assessment for shock-wave/turbulent-boundarylayer interaction in transonic and supersonic flows,” Comput. Fluids 29, 275–299 (2000).CrossRefzbMATHGoogle Scholar
  9. 9.
    I. A. Bedarev and N. N. Fedorova, “Investigation of factors affecting the quality of prediction of turbulent separated flows,” Vychisl. Tekhnol. 4 (1), 14–32 (1999).MathSciNetzbMATHGoogle Scholar
  10. 10.
    K. Sinha, K. Manesh, and G. V. Candler, “Modeling the effect of shock unsteadiness in shock/turbulent boundary-layer interactions,” AIAA J. 43, 586–594 (2005).CrossRefGoogle Scholar
  11. 11.
    A. A. Zheltovodov, “Analysis of properties of two-dimensional separated flows with supersonic velocities,” in Studies of Near-Wall Flows of Viscous Gas, Ed. by N. N. Yanenko (Novosibirsk, 1979), pp. 59–94 [in Russian].Google Scholar
  12. 12.
    A. A. Zheltovodov, E. K. Shilein, and V. N. Yakovlev, “Development of a turbulent boundary layer during combined interaction with compressed discontinuities and rarefraction waves,” Preprint No. 28 (Inst. Theor. Appl. Mech., Novosibirsk, 1983).Google Scholar
  13. 13.
    A. A. Zheltovodov and V. N. Yakovlev, “Stages of development, gas dynamic structure and turbulence characteristics of turbulent compressible separated flows in the vicinity of 2-D obstacles,” Preprint No. 27 (Inst. Theor. Appl. Mech., Novosibirsk, 1986).Google Scholar
  14. 14.
    D. C. Wilcox, Turbulence Modeling for CFD, 3rd ed. (DCW Industries, 2006).Google Scholar
  15. 15.
    E. V. Kazhan, “Stability improvement of Godunom-Kolgan-Rodionov TVD scheme by a local implicit smoother,” TsAGI Sci. J. 43, 787–812 (2012).CrossRefGoogle Scholar
  16. 16.
    V. V. Vlasenko, “On mathematical approach and principles of numerical methods construction for application package EWT-TsAGI,” Tr. TsAGI, No. 2671, 20–85 (2007).Google Scholar
  17. 17.
    P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper No. 92-0439 (1992).Google Scholar
  18. 18.
    T. J. Coakley, “Turbulence modelling methods for the compressible Navier-Stokes equations,” AIAA Paper No. 83-1693 (1983).Google Scholar
  19. 19.
    T. Coakley and T. Hsieh, “Comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows,” AIAA Paper No. 85-1125 (1985).Google Scholar
  20. 20.
    Practical Aspects of Solving Problems of External and Internal Aerodynamics Using ZEUS Technology in a Pachage of EWT-TsAGI, Collection of Articles, Tr. TsAGI, No. 2735 (2015).Google Scholar
  21. 21.
    F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32, 269–289 (1994).CrossRefGoogle Scholar
  22. 22.
    V. S. Demyanenko and A. A. Zheltovodov, “Experimental investigations of turbulent boundary layer breakaway in the vicinity of stair,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 73–80 (1977).Google Scholar
  23. 23.
    G. N. Abramovich, Applied Gas Dynamics, 5th ed. (Nauka, Moscow, 1991), vol. 1 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. M. Bosnyakov
    • 1
    Email author
  • A. A. Babulin
    • 2
  • V. V. Vlasenko
    • 1
  • M. F. Engulatova
    • 1
  • S. V. Matyash
    • 1
  • S. V. Mikhaylov
    • 1
  1. 1.Zhukovsky Central Aero-Hydrodynamic Institute (TsAGI)Zhukovsky cityRussia
  2. 2.Sukhoi New Civil TechnologyMoscowRussia

Personalised recommendations