Skip to main content
Log in

Numerical simulation of the influence of energy deposition on the base flow

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

In the Reynolds equations with the Shear Stress Transport (SST) turbulence model, the numerical simulation of the effect of the energy input into the stream in front of the bow and the side surface on the base flow has been performed. For the regimes considered, it has been shown that the energy input before the bow, resulting in a significant reduction of wave resistance has little effect on the value of the base pressure. This ensures the efficiency of the energy input as a means of reducing the drag force. For the considered regimes, it has been shown that the input of energy around the lateral surface leads to a small increase in the base pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Chernikov, S. Dvinin, A. Ershov, V. Shibkov, I. Timofeev, and D. van Wie, “Experimental and theoretical research of DC transversal gas discharge in a supersonic gas flow,” in Proceedings of the 3rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, Ed. by V. A. Bityurin, (IVTAN, Moscow, 2001), pp. 129–134.

    Google Scholar 

  2. G. I. Mishin, A. I. Klimov, and A. Yu. Gridin, “Longitudinal electric discharge in supersonic gas flow,” Sov. Tech. Phys. Lett. 18, 506 (1992).

    Google Scholar 

  3. V. M. Fomin, A. V. Lebedev, and A. I. Ivanchenko, “Space-energy characteristics of electric discharge in supersonic gas flow,” Phys. Dokl. 43, 440–443 (1998).

    Google Scholar 

  4. V. Skvortsov, Yu. Kuznetsov, V. Litvinov, B. Efimov, V. Markin, A. Uspenskii, A. Khvostov, A. Golovnja, L. Vasilenko, P. Kuzjaev, A. Klimov, and S. Leonov, “Investigation of aerodynamic effects at the electric discharge creation on the models of different geometry,” in Proceedings of the 2rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, Ed. by V. A. Bityurin (IVTAN, Moscow, 2000), pp. 102–106.

    Google Scholar 

  5. L. P. Grachev, I. I. Esakov, and K. V. Khodataev, “Microwave streamer discharge in a supersonic air flow,” Tech. Phys. 44, 1271–1275 (1999).

    Article  Google Scholar 

  6. Yu. F. Kolesnichenko, V. G. Brovkin, O. A. Azarova, V. G. Grudnitsky, V. A. Laskov, and I. Ch. Mashek, “MW energy deposition for aerodynamic application,” in Proceedings of the 41st Aerospace Science Meeting and Exhibit, Reno, Nevada, USA, January 6–9, 2003, AIAA Paper No. 2003-361.

    Google Scholar 

  7. V. M. Shibkov, A. V. Chernikov, V. A. Chernikov, A. P. Ershov, L. V. Shibkova, I. B. Timofeev, D. A. Vinogradov, and A. V. Voskanyan, “Surface microwave discharge in supersonic airflow,” in Proceedings of the 2rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, Ed. by V. A. Bityurin (IVTAN, Moscow, 2000), pp. 163–168.

    Google Scholar 

  8. P. K. Tret’yakov, A. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, A. I. Ivanchenko, and V. I. Yakovlev, “Control of supersonic flow around bodies by means of high-power recurrent optical breakdown,” Phys. Dokl. 41, 566 (1996).

    Google Scholar 

  9. S. Leonov, V. Bityurin, A. Yuriev, S. Pirogov, and B. Zhukov, “Problems in energetic method of drag reduction and flow/flight control,” in Proceedings of the 41st Aerospace Science Meeting and Exhibit, Reno, Nevada, USA, January 6–9, 2003, AIAA Paper No. 2003-35.

    Google Scholar 

  10. P. Tretyakov, “Supersonic flow around axisymmetric bodies with external supply of mass and energy,” in Proceedings of the 2rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, Ed. by V. A. Bityurin (IVTAN, Moscow, 2000), pp. 128–132.

    Google Scholar 

  11. G. G. Chernyi, Gas Dynamics, The School-Book for Universities and Higher Schools (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  12. P. Yu. Georgievskii and V. A. Levin, “Supersonic flow about objects with external heat—evolution sources,” Sov. Tech. Phys. Lett. 14, 303 (1988).

    Google Scholar 

  13. P. Yu. Georgievskii and V. A. Levin, “Control of the flow past bodies using localized energy addition to the supersonic oncoming flow,” Fluid Dyn. 38, 794–805 (2003).

    Article  MATH  Google Scholar 

  14. V. N. Zudov, P. K. Tret’yakov, A. V. Tupikin, and V. I. Yakovlev, “Supersonic flow past a thermal source,” Fluid Dyn. 38, 782–793 (2003).

    Article  Google Scholar 

  15. V. P. Gordeev, A. V. Krasil’nikov, V. I. Lagutin, and V. N. Otmennikov, “Experimental study of the possibility of reducing supersonic drag by employing plasma technology,” Fluid Dyn. 31, 313–317 (1996).

    Article  Google Scholar 

  16. V. A. Levin, V. G. Gromov, and N. E. Afonina, “Numerical analysis of the effect of local energy supply on the aerodynamic drag and heat transfer of a spherically blunted body in a supersonic air flow,” J. Appl. Mech. Tech. Phys. 41, 915–922 (2000).

    Article  MATH  Google Scholar 

  17. A. I. Zubkov, A. F. Garanin, V. F. Safronov, L. D. Sukhanovskaya, and P. K. Tretyakov, “Supersonic flow past an axisymmetric body with combustion in separation zones at the body nose and base,” Thermophys. Aeromech. 12, 1–12 (2005).

    Google Scholar 

  18. P. K. Chang, Separation of Flow (Pergamon, New York, 1970).

    MATH  Google Scholar 

  19. A. I. Shvets and I. T. Shchvets, Gas Dynamics of Near Wakes (Naukova Dumka, Kiev, 1976; NASA, Washington DC, 1977).

    Google Scholar 

  20. L. V. Gogish and T. Yu. Stepanov, Turbulent Separated Flows (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  21. B. N. Dan’kov, A. P. Kosenko, V. N. Kulikov, and V. N. Otmennikov, “Wave disturbances in transonic separated flows,” Fluid Dyn. 41, 992–1003 (2006).

    Article  Google Scholar 

  22. I. Yu. Kudryashov and A. E. Lutsky, “Mathematical simulation of turbulent separated transonic flows around the bodies of revolution,” Math. Models Comput. Simul. 3, 690–696 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  23. O. B. Larin and V. A. Levin, “Effect of energy supply to a gas on laminar boundary layer separation,” J. Appl. Mech. Tech. Phys. 51, 11–15 (2010).

    Article  MATH  Google Scholar 

  24. A. A. Zheltovodov and E. A. Pimonov, “Numerical simulation of an energy deposition zone in quiescent air and in a supersonic flow under the conditions of interaction with a normal shock,” Tech. Phys. 58, 170–184 (2013).

    Article  Google Scholar 

  25. F. Simon, S. Deck, and P. Guillen, “Reynolds-averaged Navier-Stokes/large-eddy simulations of supersonic base flow,” AIAA J. 44, 2578–2590 (2006).

    Article  Google Scholar 

  26. F. R. Menter, “Zonal two-equation k-ω turbulence models for aerodynamic flows,” AIAA Paper No. 1993-2906.

  27. P. Bradshaw, D. H. Ferriss, and N. P. Atwell, “Calculation of boundary layer development using the turbulent energy equation,” J. Fluid Mech. 28, 593–616 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Lutsky.

Additional information

Original Russian Text © I.Yu. Kudryashov, A.E. Lutsky, Ya.V. Khankhasaeva, 2015, published in Matematicheskoe Modelirovanie, 2015, Vol. 27, No. 9, pp. 33–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, I.Y., Lutsky, A.E. & Khankhasaeva, Y.V. Numerical simulation of the influence of energy deposition on the base flow. Math Models Comput Simul 8, 207–218 (2016). https://doi.org/10.1134/S2070048216020083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048216020083

Keywords

Navigation