Skip to main content
Log in

Resolution limits of continuous media mode and their mathematical formulations

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

In this work we present new mathematical formulations for several classical models of a continuum media. The developed formulations take into account the physical constraints on the details of its description. As compared to classical approaches, the presented ones introduce additional terms, which enable the effective solution of these problems on high-performance computer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. Chetverushkin, “High-Performance Computing: Fundamental Problems in Industrial Applications, in Parallel, Distributed and Grid Computing for Engineering, Eds. by B.H. Topping and P. Ivanyi (Saxe-Coburg Publications, 2009), pp. 96–108.

    Google Scholar 

  2. B. N. Chetverushkin, “Applied Mathematics and Problems of Using High Performance Computing Systems,” Tr. Moskovskogo Fiz. Tekh. Inst., 3(4), 96 (2011), pp. 96–108.

    Google Scholar 

  3. O. A. Ladyzhenskaya, Mathematical Theory of Dynamics of Viscous Incompressible Fluid (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  4. A. I. Koshelev and S. I. Chelnak, Solution Regularity of Some Boundary Value Problems for Quasilinear Elliptic and Parabolic Systems (Izd. St. Petersburg Univ., St. Petersburg, 2000) [in Russian].

    Google Scholar 

  5. G. M. Kobel’kov, “Existence of “Global” Solution for Ocean Dynamics Equations,” Dokl. Akad. Nauk 407(1), 457 (2006).

    MathSciNet  Google Scholar 

  6. L. G. Loitsianskii, Fluid and Gas Mechanics (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  7. A. A. Vlasov, Statistical Distribution Functions (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  8. V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Principles of Plasma Physics (Atomizdat, Moscow 1977).

    Google Scholar 

  9. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  10. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, New York, 1952).

    Google Scholar 

  11. R. L. Liboff, Introduction to the Theory of Kinetic Equations (Wiley, New York, 1969).

    MATH  Google Scholar 

  12. V. V. Vedenyapin, Boltzmann and Vlasov Kinetic Equations (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  13. M. I. Volchinskaya, A. N. Pavlov, and B. N. Chetverushkin, “A Scheme for Integrating Equations of Gas Dynamics,” Preprint No. 113, (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 1983).

    Google Scholar 

  14. B. N. Chetverushkin, Kinetic Shemes and Quasi-Gas-Dynamic System of Equations (CIMNE, Barcelona, 2008).

    Google Scholar 

  15. T. G. Yelizarova and B. N. Chetverushkin, “Use of Kinetic Models for Calculating Gas Dynamic Flows,” in Mathematical Modeling. Processes in Nonlinear Media (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  16. T. G. Yelizarova, Quasi-Gas-Dynamic Equations and Methods for Computing Viscous Flows (Nauchnyi mir, Moscow, 2007) [in Russian].

    Google Scholar 

  17. A. A. Zlotnik and B. N. Chetverushkin, “Parabolicity of the Quasi-Gasdynamic System of Equations, its Hyperbolic Second-Order Modification, and the Stability of Small Perturbations for Them,” Comput. Math. Math. Phys. 48(3), 420 (2008).

    Article  MathSciNet  Google Scholar 

  18. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  19. A. A. Davydov, B. N. Chetverushkin, and E. V. Shil’nikov, “Simulating Flows of Incompressible and Weakly Compressible Fluids on Multicore Hybrid Computer Systems,” Comput. Math. Math. Phys. 50(12), 157 (2010).

    MathSciNet  Google Scholar 

  20. G. R. McNamara and G. Zanetti, “Use of the Boltzmann Equation for Simulate Lattice Gas Automata,” II Phys. Rev. Lett. 56(14), 1505 (1986).

    Article  Google Scholar 

  21. M. Tsutahara, N. Takada, and N. Kataoka, Lattice Gas and Lattice Boltzmann Methods? New Method in Computational Fluid Dynamics (Corona Publishing, Tokyo, 1999).

    Google Scholar 

  22. S. Succi, The Lattice Boltzmann Equation in Fluid Dynamics and Beyond (Claredon Press, Oxford, 2001).

    Google Scholar 

  23. E. Oñate, “Derivation of Stabilized Equations for Numerical Solution of Advective Diffusive Transport and Fluid Flow Problems,” Comput. Math. Appl. Mech. Eng. 151, 233 (1998).

    Article  MATH  Google Scholar 

  24. E. Oñate and M. Manzan, “Stabilization techniques for finite element analysis and convection diffusion problems,” CIMNE, No. 183 (2000).

    Google Scholar 

  25. L. S. Basniev, I. N. Kochina, and V. M. Maksimov, Subsurface Hydromechanics (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  26. N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  27. M. A. Trapeznikova, M. S. Belotserkovskaya, and B. N. Chetverushkin, “An Analog of Kinetically Consistent Schemes for the Simulation of the Filtration Problem,” Mat. Model. 14(10), 69 (2002).

    MathSciNet  MATH  Google Scholar 

  28. D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, and N. G. Churbanova, “Application of Explicit Schemes for the Simulation of the Two-Phase Filtration Process,” Math. Models Comput. Simul. 1, 62 (2012).

    Article  MathSciNet  Google Scholar 

  29. W. Wieser, L’équation de Boltzmann avec Terme de Viscosité, Solution Globales sous des Hypotheses Faibles sur la Condition Initial. C.R. Acad. Sc., 298, ser. I.N.S. (1989).

  30. Yu. V. Sheretov, Mathematical Modeling of Flows on the Basis of Quasi-Hydrodynamic and Quasi-Gasdynamic Equations (Tver Univ., Tver, 2000) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Chetverushkin.

Additional information

Original Russian Text © B.N. Chetverushkin, 2012, published in Matematicheskoe Modelirovanie, 2012, Vol. 24, No. 11, pp. 33–52.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetverushkin, B.N. Resolution limits of continuous media mode and their mathematical formulations. Math Models Comput Simul 5, 266–279 (2013). https://doi.org/10.1134/S2070048213030034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048213030034

Keywords

Navigation