Numerical simulation of solitary wave generation in a wind-water annular tunnel

Abstract

We briefly describe laboratory experiments demonstrating wind-water solitary wave generation in a wind-water annular tunnel. A mathematical model of this phenomenon is constructed in the context of a shallow-water approximation. The finite-difference algorithm for solving the system is based on regularized shallow-water equations. For the first time, we obtain a numerical solution of the wind-water solitary wave that is qualitatively consistent with the experimental data.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. V. Levin and M. A. Nosov, Physics of Tsunamis (Yanus-K, Moscow, 2005) [in Russian].

    Google Scholar 

  2. 2.

    O. A. Glebova, Al. V. Kravtsov, and N. K. Shelkovnikov, “Experimental and Numerical Study of Wind Solitary Waves on Water,” Izv. Akad. Nauk, Ser. Fiz. 66(12), 1727–1729 (2002).

    Google Scholar 

  3. 3.

    N. K. Shelkovnikov, “Induced Soliton in a Fluid,” JETP Lett. 82(10), 638–641 (2005).

    Article  Google Scholar 

  4. 4.

    Al. N. Kravtsov, V. V. Kravtsov, and N. K. Shelkovnikov, “A Numerical Experiment on the Modeling of Solitary Waves on the Surface of a Fluid in an Annular Channel,” Comput. Math. Math. Phys. 44(3), 529–531 (2004).

    MathSciNet  Google Scholar 

  5. 5.

    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, et al., Solitons and Nonlinear Wave Equations (Academic Press, London, 1982; Mir, Moscow, 1988).

    Google Scholar 

  6. 6.

    A. N. Volobuev, V. I. Koshev, and E. S. Petrov, Biophysical Principles of Geodynamics (Moscow, 2009) [in Russian].

  7. 7.

    T. G. Elizarova and O. V. Bulatov, “Regularized Shallow Water Equations and a New Method of Simulation of the Open Channel Flows,” Comput. Fluids 46(1), 206–211 (2011).

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    O. V. Bulatov and T. G. Elizarova, “Regularized Shallow Water Equations and an Efficient Method for Numerical Simulation of Shallow Water Flows,” Comput. Math. Math. Phys. 51(1), 160–173 (2011).

    MathSciNet  Article  Google Scholar 

  9. 9.

    T. G. Elizarova, A. A. Zlotnik, and O. V. Nikitina, “Simulation of One-Dimensional Shallow-Water Flows using Regularized Equations,” Preprint No. 33 (Keldysh Inst. Appl. Math., Moscow, 2011).

    Google Scholar 

  10. 10.

    T. G. Elizarova, Quasi-Gas Dynamic Equations and Methods for the Computation of Viscous Flow (Nauchnyi mir, Moscow, 2007) [in Russian]. English Translation: Springer 2009.

    Google Scholar 

  11. 11.

    Yu. V. Sheretov, Dynamics of Continuous Media in Spatial and Temporal Averaging (RC Dynamics, Moscow-Izhevsk, 2009) [in Russian].

    Google Scholar 

  12. 12.

    G. I. Marchuk, Mathematical Modeling in the Problem of Environment (Nauka, Moscow, 1982) [In Russian].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. G. Elizarova.

Additional information

Original Russian Text © T.G. Elizarova, M.A. Istomina, N.K. Shelkovnikov, 2012, published in Matematicheskoe Modelirovanie, 2012, Vol. 24, No. 4, pp. 107–116.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elizarova, T.G., Istomina, M.A. & Shelkovnikov, N.K. Numerical simulation of solitary wave generation in a wind-water annular tunnel. Math Models Comput Simul 4, 552–559 (2012). https://doi.org/10.1134/S2070048212060051

Download citation

Keywords

  • wind-water solitary wave
  • shallow-water equations
  • quasi-gas dynamic equations
  • regularized shallow-water equations