Mathematical Models and Computer Simulations

, Volume 4, Issue 6, pp 552–559 | Cite as

Numerical simulation of solitary wave generation in a wind-water annular tunnel

  • T. G. ElizarovaEmail author
  • M. A. Istomina
  • N. K. Shelkovnikov


We briefly describe laboratory experiments demonstrating wind-water solitary wave generation in a wind-water annular tunnel. A mathematical model of this phenomenon is constructed in the context of a shallow-water approximation. The finite-difference algorithm for solving the system is based on regularized shallow-water equations. For the first time, we obtain a numerical solution of the wind-water solitary wave that is qualitatively consistent with the experimental data.


wind-water solitary wave shallow-water equations quasi-gas dynamic equations regularized shallow-water equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. V. Levin and M. A. Nosov, Physics of Tsunamis (Yanus-K, Moscow, 2005) [in Russian].Google Scholar
  2. 2.
    O. A. Glebova, Al. V. Kravtsov, and N. K. Shelkovnikov, “Experimental and Numerical Study of Wind Solitary Waves on Water,” Izv. Akad. Nauk, Ser. Fiz. 66(12), 1727–1729 (2002).Google Scholar
  3. 3.
    N. K. Shelkovnikov, “Induced Soliton in a Fluid,” JETP Lett. 82(10), 638–641 (2005).CrossRefGoogle Scholar
  4. 4.
    Al. N. Kravtsov, V. V. Kravtsov, and N. K. Shelkovnikov, “A Numerical Experiment on the Modeling of Solitary Waves on the Surface of a Fluid in an Annular Channel,” Comput. Math. Math. Phys. 44(3), 529–531 (2004).MathSciNetGoogle Scholar
  5. 5.
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, et al., Solitons and Nonlinear Wave Equations (Academic Press, London, 1982; Mir, Moscow, 1988).zbMATHGoogle Scholar
  6. 6.
    A. N. Volobuev, V. I. Koshev, and E. S. Petrov, Biophysical Principles of Geodynamics (Moscow, 2009) [in Russian].Google Scholar
  7. 7.
    T. G. Elizarova and O. V. Bulatov, “Regularized Shallow Water Equations and a New Method of Simulation of the Open Channel Flows,” Comput. Fluids 46(1), 206–211 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    O. V. Bulatov and T. G. Elizarova, “Regularized Shallow Water Equations and an Efficient Method for Numerical Simulation of Shallow Water Flows,” Comput. Math. Math. Phys. 51(1), 160–173 (2011).MathSciNetCrossRefGoogle Scholar
  9. 9.
    T. G. Elizarova, A. A. Zlotnik, and O. V. Nikitina, “Simulation of One-Dimensional Shallow-Water Flows using Regularized Equations,” Preprint No. 33 (Keldysh Inst. Appl. Math., Moscow, 2011).Google Scholar
  10. 10.
    T. G. Elizarova, Quasi-Gas Dynamic Equations and Methods for the Computation of Viscous Flow (Nauchnyi mir, Moscow, 2007) [in Russian]. English Translation: Springer 2009.Google Scholar
  11. 11.
    Yu. V. Sheretov, Dynamics of Continuous Media in Spatial and Temporal Averaging (RC Dynamics, Moscow-Izhevsk, 2009) [in Russian].Google Scholar
  12. 12.
    G. I. Marchuk, Mathematical Modeling in the Problem of Environment (Nauka, Moscow, 1982) [In Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • T. G. Elizarova
    • 1
    • 2
    Email author
  • M. A. Istomina
    • 1
    • 2
  • N. K. Shelkovnikov
    • 1
    • 2
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations