Skip to main content
Log in

Equations of stochastic quasi-gas dynamics: Viscous gas case

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The article reports some results of test calculations of one model from the hierarchical set of models of gas dynamics obtained (a brief scheme of the deduction is presented) from a system of stochastic differential equations describing gas at moderate and small Knudsen numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Skorokhod, Stochastic Equations for Complicated Systems (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  2. A. A. Arsen’ev, Lectures on Kinetic Euqations (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  3. K. Cherchin’yani, Theory and Applications of the Boltzmann Equations (Mir, Moscow, 1978) [in Russian].

    Google Scholar 

  4. C. Cercignani, Rarefied Gas Dynamics (University Press, Cambridge, 2000).

    MATH  Google Scholar 

  5. B. N. Chetverushkin, The Kinetic Schemes and Quasi-gas-dynamic System of Euqations (MAKS Press, Moscow, 2004) [in Russian].

    Google Scholar 

  6. Yu. L. Klimontovich, “The Need and Possibility for a Unified Description of Kinetic and Hydrodynamic Processes,” Teor. i matem. fizika 92(2), 312 (1992).

    MATH  MathSciNet  Google Scholar 

  7. G. Repke, Non-equilibrium Statistical Mechanics (Mir, Moscow, 1990) [in Russian].

    Google Scholar 

  8. K. A. Oelschlager, “Martingale Approach to the Law of Large Number for Weakly Interacting Stochastic Processes,” The Annals of Probability 12 (2), 458 (1984).

    Article  MathSciNet  Google Scholar 

  9. V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, et al., “Unified Solver for Rarefied and Continuum Flows with Adaptive Mesh and Algorithm Refinement,” Journal of Computational Physics 223, 589 (2007).

    Article  MATH  Google Scholar 

  10. K. Morinishi, “A Continuum/Kinetic Hybrid Approach for Multi — Scale Flow Simulation,” European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 (TU Delft, the Netherlands).

    Google Scholar 

  11. P. Degond and M. Lemou, “Turbulence Models for Incompressible Fluids Derived from Kinetic Theory,” J. Math. Fluid Mech. 257 (2002).

  12. T. G. Elizarova, Quasi-gas-dynamic Euqations and Method for Calculation of Viscous Flows (Nauchnyi Mir, Moscow, 2007) [in Russian].

    Google Scholar 

  13. A. Lukschin, H. Neunzert, and J. Struckmeier, “Coupling of Navier — Stokes and Boltzmann Regions,” (HER-MES Aerodynamics R/Q Program meeting, VKI, 1992).

  14. S. V. Bogomolov, “Stochastic Model of Hydrodynamics,” Mat. Mod. 2(11), 85 (1990).

    MATH  MathSciNet  Google Scholar 

  15. S. V. Bogomolov, “The Fokker-Planck Equation for Gas With the Knudsen Moderate Numbers,” Mat. Mod. 15(4), 16 (2003).

    MATH  MathSciNet  Google Scholar 

  16. S.V. Bogomolov, “On Fokker-Planck Model for the Integral of the Boltzmann Collisions with the Moderate Knudsen Numbers,” Mat. Mod. 21(1), 111–117 (2009).

    MATH  Google Scholar 

  17. S. V. Bogomolov, “An Approach to Derivation of Stochastic Models of Gas Dynamics,” DAN 423(4), 458 (2008).

    MATH  MathSciNet  Google Scholar 

  18. S. V. Bogomolov, “Quasi-dynamic Equations,” Mat. Mod. 21(12), 145 (2009).

    MATH  MathSciNet  Google Scholar 

  19. Yu.V. Sheretov. Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii. — (Izhevsk, Moscow) [in Russian].

  20. I. A. Ivakhnenko, S.V. Polyakov, and B.N. Chetverushkin, “Quasi-hydro-dynamic Model and Small-Scale Turbulence,” Mat. Mod. 1(1), pp. 44–50 (2009).

    Google Scholar 

  21. H. Brenner, “Fluid Mechanics Revisited,” Physica A 370, pp. 190–224 (2006).

    Article  MathSciNet  Google Scholar 

  22. H. Brenner, “Bi-velocity hydrodynamics,” Physica A 388, pp. 3391–3398 (2009).

    Article  Google Scholar 

  23. A. Bardow and H.C. Oettinger, “Consequences of the Brenner Modification to the Navier-Stokes Equations for Dynamic Light Scattering,” Physica A 373, pp. 88–96 (2007).

    Article  Google Scholar 

  24. S. K. Dadzie, J. M. Reese, and C. R. McInnes, “A Continuum Model of Gas Flows with Localized Density Variations,” Physica A 387, pp. 6079–6094 (2008).

    Article  MathSciNet  Google Scholar 

  25. B. Oksendal’, Stochastic Differential Equations (Mir, Moscow, 2003) [in Russian].

    Book  Google Scholar 

  26. G. Berd, Molecular Gas Dynamics (Mir, Moscow, 1981) [in Russian].

    Google Scholar 

  27. U. Ghia, K. N. Ghia, C.T. Shin, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. Comput. Physics 48(3), pp. 387–411 (1982).

    Article  MATH  Google Scholar 

  28. L. V. Dorodnitsyn and B. N. Chetverushkin, “An Implicit Scheme for Simulation of Subsonic Gas Flow,” Mat. Mod. 9(5). pp. 108–118 (1997).

    MATH  MathSciNet  Google Scholar 

  29. A. A. Samarskii, Theory of Differential Schemes (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  30. L. V. Dorodnitsyn, “Nonreflecting Boundary Conditions For Gas-dynamic Problems in the Nonlinear Statement,” Applied Mathematics and Informatics No.11 (MAKS Press, Moscow, 2002) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bogomolov.

Additional information

Original Russian Text © S.V. Bogomolov, L.V. Dorodnitsyn, 2010, published in Matematicheskoe Modelirovanie, 2010, Vol. 22, No. 12, pp. 49–64.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomolov, S.V., Dorodnitsyn, L.V. Equations of stochastic quasi-gas dynamics: Viscous gas case. Math Models Comput Simul 3, 457–467 (2011). https://doi.org/10.1134/S207004821104003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004821104003X

Keywords

Navigation